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Abstract

Relatively flat US output growth versus rising numbers of US researchers is often interpreted

as evidence that “ideas are getting harder to find.” We build a new 46-year panel tracking the

universe of US firms’ patenting to investigate the micro underpinnings of this claim, separately

examining the relationships between research inputs and ideas (patents) versus ideas and growth.

Over our sample period, we find that researchers’ patenting productivity is increasing, there is

little evidence of any secular decline in high-quality patenting common to all firms, and the link

between patents and growth is present, differs by type of idea, and is fairly stable. On the other

hand, we find strong evidence of secular decreases in output unrelated to patenting, suggesting an

important role for other factors. Together, these results invite renewed empirical and theoretical

attention to the impact of ideas on growth. To that end, our patent-firm bridge, which will be

available to researchers with approved access, is used to produce new, public-use statistics on the

Business Dynamics of Patenting Firms (BDS-PF).
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1 Introduction

A central question for understanding long-run growth is whether and how the existing stock of knowl-

edge affects future innovation. In his Nobel-prize-winning research into endogenous growth, Romer

(1990) shows that firms’ decisions to invest in research and development can affect the economy’s

long-run growth rate, even when the population is constant. A key assumption supporting this result

is that the number of ideas researchers discover each year rises linearly with the stock of ideas al-

ready discovered. If, instead, researchers’ marginal products tail off as the knowledge stock increases,

firms would increasingly reallocate workers to production, and growth would decline. Romer noted

the need for empirical evidence to justify this assumption: “Whether opportunities in research are

actually petering out, or will eventually do so, is an empirical question that this kind of theory cannot

resolve.”1

Subsequent examination of US data reveals dramatic increases in both the number and share

of workers devoted to research, even as the aggregate US growth rate has remained fairly constant.

These patterns have led some researchers to conclude that “ideas are getting harder to find” (Jones,

1995; Kortum, 1997), since output growth maps one-to-one with idea growth in Romer (1990). Most

recently, Bloom et al. (2020) expand on this evidence by documenting similar patterns for various

samples of products and firms.2 They posit that research efforts may face diminishing returns, perhaps

because all of the “low hanging fruit” has been picked. The ensuing “semi-endogenous” growth models

assume that researchers’ marginal products exhibit decreasing returns in the aggregate stock of ideas,

such that the growth rate declines as research output grows (holding the number of researchers fixed).

In these models, innovation affects average consumption per person, but has no impact on long-run

growth rates. As such, there is no role for innovation policy to affect long-run growth; improvements

in living standards depend solely on population growth.

While a constant aggregate output growth rate coupled with the rising share of US researchers

is consistent with the hypothesis that a growing stock of knowledge makes it harder to innovate,

existing papers do not provide direct evidence of such a mechanism. Moreover they do not pursue

other possible explanations for the aggregate trends. Most notably, this interpretation neglects the

possibility that the relationship between ideas and growth, as opposed to that between research inputs

and ideas, is not linear, may be influenced by other factors, and can change over time. Even if ideas

abound, mapping them into growth may depend on the type and quality of ideas, the extent to which

they generate winner-take-all rewards or foster increases in market power, changing incentives firms

face to implement ideas, and evolution of regulatory and competitive environments.

In this paper, we build a novel 46-year firm-level panel to examine these two relationships sep-

arately – between knowledge inputs and ideas, and between ideas and growth. Toward that end,

we construct a new bridge mapping the universe of US non-farm employer businesses in the Census

1Romer (1990), page S84. Related papers in which endogenous growth arises from directed research efforts yield
similar predictions. For example, see Grossman and Helpman (1991) and Aghion and Howitt (1992).

2For example, they compare R&D expenditures by firms that produce semiconductors to real output growth in semi-
conductors, R&D expenditures in US agriculture and changes in crop yields, the number of cancer research publications
versus years of life saved after a cancer diagnosis, and R&D expenditures versus output growth by a subset of Compustat
firms and a subset of US manufacturing firms.
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Bureau’s Longitudinal Business Database (LBD) to US patents, which, following the literature, we

take as a key manifestation of ideas. This bridge is used to produce new, public-use Business Dynam-

ics of Patenting Firms (BDS-PF) statistics available on Census’ website. To address the well-known

limitations of simple patent counts, our analysis also considers patents weighted by external citations

(Akcigit and Kerr, 2018), novelty (Kelly et al., 2021), and private monetary value (Kogan et al.,

2017). Exploiting detailed information on firms’ payroll and R&D expenditures we construct a broad

set of knowledge-input stocks, and estimate within-firm elasticities of ideas to knowledge, as well as

the relationship between the flow of ideas and firm-level sales growth. Crucially, we allow both sets

of estimates to vary over time.

We start by documenting three new facts about the evolution of US patenting that have important

implications for future work. First, it is no longer sufficient to use the manufacturing sector to study

US innovation. Although manufacturing firms are responsible for the majority of patenting in the

1970s and 1980s, they account for less than a third in the 2010s, with their share of the most novel

patents (i.e., “breakthroughs”) falling from 73 to 12 percent. Second, patenting differs markedly

across the firm size and age distributions, with considerable changes in both over time. Mega-firms

with more than 10 thousand workers account for 58 percent of patent grants and external citations

in the 1970s, but only 48 and 49 percent, respectively, by the 2010s. Patenting by young firms

rises over time, and young firms account for disproportionately high shares of external citations and

breakthroughs relative to their share of patent grants. Finally, our comparison of trends in our

LBD panel versus a similarly constructed Compustat panel reveals that researchers relying on the

latter largely miss not only cross-sectional differences in the types of firms that patent, but also how

patenting firms’ characteristics evolve over time.

The changing patterns of patenting firms’ industry, size, and age present a range of potential

explanations for why researcher productivity and the effects of ideas on growth may change over

time. For instance, innovation by manufacturing firms may be sold in more tangible goods with

changes in value that are easier to measure. Young and small firms in nascent industries may be

better able to create new ideas, but less well-equipped to bring those ideas to market. Large and

old firms, which are better able to scale ideas, may also have incentives to exploit market power to

restrain output, thereby obscuring the relationship between research inputs and growth in aggregate

data.

In the second part of the paper, we estimate potentially time-varying relationships between firm-

level patenting and our various measures of knowledge-input stocks. In contrast to the notion that

“ideas are getting harder to find,” the estimated patent elasticities are flat or rising over time with

respect to almost all the knowledge inputs we consider. For the most broadly defined knowledge

input – capitalized total payroll – we find that the elasticity for patents rises from 0.46 in the first

semi-decade of our analysis (1977 to 1981) to 0.62 in the final semi-decade (2012 to 2016). For our

most narrowly defined knowledge stock – capitalized R&D expenditures – elasticities increase from

0.26 to 0.48 over the same interval. These results suggest that firms’ ability to discover new ideas,

per unit of knowledge inputs, has improved over the last five decades.

Ideas may differ in terms of their quality and thus likelihood of affecting growth. To determine
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whether high-quality ideas also are getting easier to find, we estimate analogous elasticities using

patents weighted by the external citations they receive within five years of granting, and by whether

or not they are a breakthrough. We also consider patents’ estimated market value, which contains

investors’ assessments of the contribution of the idea to firms’ net present value. This indicator of

patent quality is unlike citations and breakthroughs because it incorporates the second of the two key

relationships mapping research inputs to growth, i.e., the market’s expectation about the link between

the idea and growth. We find that while patent elasticities are similarly flat or rising over time for

patents weighted by external citations and breakthroughs, they fall for value. The first two results

indicate that one definition of “ideas are getting harder to find,” i.e., declining ideas per research

input controlling for other factors, is not evident in the data over the last five decades. The third

result suggests that the mapping of those ideas to sales or productivity growth may be changing.

An important consideration in estimating elasticities over our long sample period is that the

process of patenting might change for various reasons, e.g., in terms of the quality of the ideas firms

seek to protect, or the way in which the US Patent and Trademark Office (USPTO) grants approval.

A key feature of our estimation is that we include both firm and semi-decade fixed effects. The latter

capture changes in patenting across semi-decades that are common to all firms in a particular sample.

This approach ensures that our patenting elasticities are not contaminated by common institutional

or macro-economic shocks that might raise or lower the simplest measure of patent efficiency – patents

per researcher – often examined in the growth literature.

The estimated semi-decade fixed effects are also informative in their own right. Indeed, if, in

contrast to Romer (1990)’s assumption, a rising stock of ideas somehow makes finding new ideas

more difficult, one would expect a secular decline in these fixed effects. While the data reveal such

declines for two of our six specifications using patent grants, the semi-decade fixed effects from the

citation-weighted grants and patent value regressions are flat or rising across all measures of knowledge

stocks, while those for breakthrough-weighted patents are flat or rising for the first half of our sample

period and decline thereafter. These trends do not support a second way of defining “ideas are getting

harder to find,” i.e., that idea creation has fallen universally across all firms independent of research

efforts over the last five decades.

In the final section of the paper, we examine the second link between ideas and growth directly.

We follow the growth regressions introduced by Kogan et al. (2017), but extend them in three ways:

first to allow the semi-elasticity between growth and ideas to evolve over time, second to examine

additional patenting activities, and third to follow the growth literature more closely by regressing the

growth of output on the growth of ideas, controlling for changes in employment.3 We generally find a

positive relationship between the growth rate in a firm’s patent grants and its sales growth, even after

controlling for changes in its employment growth. Growth is more strongly related to citations and

breakthrough patents, relative to patent grants. Most notably, the estimates are fairly stable over

time. By contrast, we observe declines at the end of the period in the semi-decade fixed effects after

controlling for firms’ growth of ideas. These decreases in the time effects suggest a secular decline in

growth among patenting firms that is independent of their growth in ideas.

3In ongoing work for a future draft, we are replicating these regressions using the LBD panel.
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Together, our results indicate that researcher productivity is rising, there is no clear trend of a

secular decline in firms’ ability to find ideas, and that, if anything, the link between ideas and growth

is rising. The trends are hard to square with the claim that “ideas are getting harder to find.” On

the other hand, we find that the relationship between growth and ideas varies by the type of idea,

and document a secular decline in output growth after controlling for changes in firms’ ideas. These

results suggest greater attention be paid to the link between ideas and growth in trying to understand

why the rise in researcher inputs has not translated to an increase in growth rates.

A central contribution of this paper is to develop and share a new set of algorithms to match

the USPTO patent data to the US Census data. This bridge will be available to all researchers

with approved projects through the Federal Statistical Research Data Centers (FSRDCs) and is used

to produce the Census Bureau’s public-use Business Dynamics Statistics of Patenting Firms (BDS-

PF) tables. Our bridge provides the longest period of matched data, spanning 1976 to 20214, and

matches 92 percent of US-based patent-assignee records. To improve matches, and (partially) account

for spurious changes in firm identifiers over time, we develop a new method to ensure longitudinal

consistency in our matching algorithms that exploits the persistence of a particular firm in the USPTO

data. To our knowledge, we are the first to develop and share these new longitudinal matching

techniques, which can be generalized to improve the matching of other external datasets to the

Census Bureau’s micro data.

We also contribute to three strands of the literature. First, we add to the research that estimates

the elasticity of patents to R&D expenditure. A seminal paper in this body of work, Hausman et al.

(1984), develops a Poisson specification to estimate patent elasticities, with more recent contributions

by Howell (2017) and Meyers and Lanahan (2022). Our contribution is to use the Poisson Pseudo

Maximum Likelihood (PPML) estimator from Silva and Tenreyro (2006) to estimate patent elasticities

by semi-decade for the universe of US firms and with respect to a wide range of patent measures and

R&D inputs. We construct a novel 46-year firm-level panel that encompasses the universe of US

non-farm employer firms and use it to show these elasticities are flat or rising for patent grants and

patent grants weighted by external citations and novelty, and declining for patent value.

We also add to work studying the impact of innovation on firm-level productivity and growth.

Griliches (1979) introduces the notion of an innovation production function, and a long line of work

in industrial organization estimates the effect of R&D expenditure on firm productivity (Hall et al.,

1998; Peters et al., 2017). Past work also links a firm’s first successful patent grant to increases in

its size and profits (Balasubramanian and Sivadasan, 2011; Kline et al., 2019). Kogan et al. (2017)

use stock market valuation changes to estimate the value of publicly traded firms’ granted patents

and show that this value is a strong predictor of future growth. We confirm that firms’ patent value

predicts future growth, but also find that citation-weighted patent counts and breakthrough patents

predict growth. Most notably, we provide the first evidence that this relationship between patents

and growth has been changing over time.

Finally we contribute to a growing body of work that investigates the empirical support for

4Our analysis data begin in 1977 while the data match, available to FSRDC projects with approved projects, begins
in 1976.
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whether ideas are getting harder to find. This work relates to a broader debate about long-run

trends in economic growth and whether all of the “low-hanging fruit” technologies have been picked

(Jones, 2009; Cowen, 2011; Brynjolfsson and McAfee, 2014; Gordon, 2017). Recent papers propose

that R&D labor and R&D capital are complementary inputs into the idea production function, with

declines in the latter making ideas harder to find (Growiec et al., 2022; Ekerdt, 2024). Ekerdt and

Wu (2024) argue that declining researcher productivity is expected in any setting with heterogeneous

workers who select into production versus innovation based on their relative skills, since inframarginal

innovation workers will necessarily be less productive. Bloom et al. (2020) infer a decline in researcher

productivity by comparing total growth in output to total growth in R&D expenditures across various

samples of aggregated micro data. Our contribution is to estimate both the relationship between

innovation inputs and ideas, as well as the relationship between ideas and growth and allowing

each to change over time. While a long-line of macro work assumes that constant growth rates in

light of increased R&D expenditures must signify concavity in Romer (1990)’s innovation production

function, our findings instead point to the need for a new way to model the production of final goods

and services from ideas.

The remainder of this paper is structured as follows. Section 2 and 3 provide background for our

empirical specifications and describe the data used to estimate them. Section 4 summarizes patenting

activity by US firms from 1977 to 2017, comparing results for all US firms in our LBD panel to

an analogously constructed Compustat panel. Sections 5 and 6 describe our estimation of patent

elasticities and the relationship between patenting and firm growth. Section 7 concludes.

2 Linking Knowledge Inputs to Growth

Romer (1990) presents a model in which firms’ profit-maximizing decisions to invest in idea creation

influence long-run growth. In his setting, the aggregate number of ‘designs’ (A) is a nonrival input

to final-good production and evolves according to

Ȧ = δHAA, (1)

where Ȧ is the change in the stock of designs, HA is total human capital (or researchers) devoted to

innovation, and δ measures what Romer calls ‘researcher productivity’. Final output is produced by

a representative firm using the following Cobb-Douglas technology

Y (HY , L, x) = Hα
Y L

ϕ
∞∑
i=1

x1−α−ϕ
i , (2)

in which each intermediate good xi requires an idea i (or blueprint) to produce, L is labor, and HY

is human capital devoted to final-good production. Although there is an infinite potential number

of ideas, only those that have been discovered can be used to produce. The knowledge stock thus

determines the number of inputs in the economy. Since inputs have additively separable effects

on output, there is a one-to-one mapping between Ȧ and output growth. Population is fixed by

assumption, so growth depends on the share of workers in the population that perform research,
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HA/(HA +HY ), and their productivity.

As discussed in the introduction, subsequent macro models have focused on the fact that this

prediction is severely counterfactual, as the number (and share) of researchers in the US economy has

increased substantially over time while aggregate growth has remained fairly constant. Jones (1995)

proposes a ‘semi-endogenous’ growth model in which Ȧ need not be linear in A, e.g.,

Ȧ = δHAA
1−β (3)

as a way to reconcile Romer (1990) with this macro fact. In this formulation, β > 0 implies that the

growth rate in ideas will decline over time as the existing stock of knowledge expands (Jones, 1995;

Kortum, 1997).5

Although the formulation in equation (3) is one way to reconcile equation (1) with aggregate

trends, at least two alternative explanations are worthy of attention. First, researcher productivity

(δ) might vary over time for a variety of reasons, including policy. To the best of our knowledge, none

of the empirical research in the growth literature ties the inferred decline in researcher productivity

to increases in the aggregate stock of ideas (A) versus changes in research productivity (δ). A second

possibility is that the relationship between ideas and output may be changing. As noted above, Romer

(1990) assumes that all ideas have additively separable effects on final-good output. In his words,

“An investigation of complementarity as well as a of mixtures of types of substitutability is left for

future work.”

Empirical investigation of long-run growth must also confront the existence of firms. Romer (1990)

assumes away any role for firm boundaries, with final-goods produced by a single competitive firm.

In reality firms innovate in part to obtain monopoly rents over their competitors. Innovating firms’

incentives to exploit market power and constrain output may therefore affect the extent to which

aggregate output responds to aggregate innovation. Our descriptive results in Section 4 provide

suggestive evidence that these factors may indeed be at play.

Our econometric analysis seeks to shed light on these issues by separately considering the rela-

tionship between knowledge inputs and ideas versus ideas and growth. For the former, we consider

Ideasft = Kηt
ftγfγtγft, (4)

where ηt is the elasticity of ideas to firm f ’s knowledge stock (Kft) in year t. γf captures a time-

invariant firm ability to generate ideas, which might be due to a wide range of factors such as better

research practices. γt accounts for annual variation in idea creation that is common to all firms.

These time fixed effects capture the contribution of the aggregate stock of knowledge available to all

firms, e.g., A in Equation (1). They may also reflect stochastic discovery of new technology “classes”,

e.g, the PC-internet revolution of the late 1980s and 1990s, or artificial intelligence in the late 2010s,

in the spirit of Ribeiro (2024). To the extent that the ‘crowing out of ideas’ is a an economy-wide

phenomenon that affects all firms equally and is increasing in the aggregate knowledge stock, it might

5Romer (1990) explicitly acknowledges that “[l]inearity in A is what makes unbounded growth possible”, and that
researchers would shift towards manufacturing as A grows, thereby lowering growth, if equation (1) were concave in A.
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manifest in a secular decline in these year effects. Finally, γft represents time-varying idiosyncratic

shocks to firm innovation.

To distinguish the creation of ideas from the production of output, our empirical analysis in

Section 5 uses patent grants as a measure of ideas. Patent grants provide a simple metric to capture

an idea that is sufficiently novel to merit legal protection. To identify high-quality ideas, we also use

patent counts weighted by external citations and novelty. We use a broad range of knowledge-input

stocks constructed from firms’ payroll and R&D surveys to approximate Kft.

In Section 6, we consider an analogous mapping to study the second relationship between ideas

(patenting) and growth,

∆Yft
Yft

= (Ideasft)
µt φfφtφft, (5)

where
∆Yft

Yft
represents growth in firms’ output, operating profit, or TFP, µt is the elasticity of growth

to ideas, φf captures a time-invariant firm ability to convert ideas into growth due, e.g., to better

management, φt captures annual US variation in this ability, common to all firms, and φft represents

idiosyncratic shocks.

In the next section, we describe the detailed microdata we use to estimate these relationships

within the firm.

3 Data

A central contribution of this paper is to construct a new 46-year firm-level panel dataset of US

patents and knowledge input stocks. In this section, we describe the US patent data, the microdata

on US firms and establishments from the US Census Bureau, and the Compustat data on publicly

traded firms. We then describe how we merge the patent data to the two firm-level panels, and

provide a brief comparison of patent coverage in the Census versus Compustat data. Finally, we

detail our new measures of knowledge input stocks and discuss their coverage and patterns.

3.1 Patent Data

PatentsView (PV): The US Patent and Trademark Office (USPTO) provides information on the

identity and location of all granted US patents and their corresponding assignees and inventors, dates

of application and granting, and citations of other patents via their PatentsView portal. We currently

observe patent grants and data on US firms (discussed below) through 2022. The mean lag between

patent application and granting is 2.6 years, with median, 90th, 95th, and 99th percentiles at 2, 5, 6,

and 8 years. Thus, about 90 percent of patents applied for in 2016 have been granted by 2022. As a

result, 2016 is the current upper limit on the sample periods examined in our empirical analyses.

Figure 1 reports the relative prevalence of foreign and domestic patent grants by application year

in PatentsView. Growth in both patent types is broadly similar, with two periods of sharp growth

beginning in the 1980s and after the Great Recession. Domestic patents represent a declining share

of all US patents, from about two-thirds in 1977 to about half in 2017, with most of the divergence
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occurring during the 2000s.6

We restrict the analyses in the remainder of the paper to “domestic” patents, which we define

as patents with at least one assignee located in the United States; we treat all other patents as

“foreign.” We focus on domestic patents for two reasons. From a practical perspective, we have

no US geographic information on purely foreign patents, and the LBD contains no information on

firms or establishments without US operations. From a conceptual perspective, we would potentially

overstate researcher patent efficiency by including foreign inventions in their idea counts.7 Hereafter,

all references to patents refer to domestic patents, unless otherwise specified.

Figure 1: Domestic vs Foreign Patents by Application Year

Source: PV and authors’ calculations.
Notes: Figure reports total (black line)
and domestic (blue line) patents in the PV
dataset over our sample period. Domestic
patents are defined as having at least one
assignee with a US location.

Griliches (1998) highlights several limitations to using patent statistics as a measure of innovative

activity. First, not all inventions are patented, either because certain types of inventions are not

patentable, or innovating firms wish to avoid disclosing their innovations (Cohen et al., 2000). Second,

patents differ greatly in their quality or economic impact (Bessen, 2008; Kogan et al., 2017). Since

this paper relies on patents as a measure of innovative output, our analysis may underestimate the

extent to which knowledge inputs generate ‘ideas’. To address potential variation in patent quality

and impact, we rely on two commonly used measures of patent quality: “external” citations received

and patent novelty. We also use the stock market’s predicted patent value, though note that this

measure includes both a quality and an expected growth component. We describe each greater detail

below.

External Citations: We use data on patent citations from PV to compute the total number of

6Appendix Figure A.7 provides a similar foreign versus domestic breakdown for patents weighted by each of the
quality measures we consider below.

7Only a subset of foreign patents can be matched to firms in the United States since not all foreign patents are
associated with firms that have employment in the United States. Moreover, foreign patents may reflect knowledge
foreign multinationals accumulate in their home countries, which we do not observe. Although US multinationals may
benefit from research activities abroad, which we also do not observe, Bilir and Morales (2020) show that US MNEs’
foreign R&D has negligible effects on their domestic outcomes.
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citations received by each patent from other patents within the first five years of being granted.

Windowing citations in this way accounts for the fact that older patents have more time to accumu-

late citations. We also distinguish between citations received from a firm’s own subsequent patents

(“self” citations) versus those from other firms’ patents (“external” citations). Self-citation generally

indicates “internal innovation,” i.e., extending one’s existing technologies in-house (Galasso and Sim-

coe, 2011), while external citation can capture exploratory innovation (Akcigit and Kerr, 2018). We

therefore focus on 5-year external citations as a measure of patent quality, and include citations from

both granted patents and pre-grant publications. In classifying citations, we consider a citation from

a patent for which we do not have a matched firm identifier (about 8 percent of patents) to be an

external citation. Since citations are forward-looking, this measure is available only through 2011.8

KPST Breakthrough Patents: Kelly et al. (2021) – hereafter KPST – estimate patent “novelty”

as the ratio of patents’ forward textual similarity to backward textual dissimilartiy with other patents

over intervals of 5 or 10 years. Their updated dataset considers over 11.4 million patents granted from

1836 to 2022, and defines a “breakthrough” patent as one whose novelty is in the top 5 or 10 percent

across all patents over that interval, net of year fixed effects. Intuitively, these patents represent

“breaks” with the past that are also widely emulated going forward. In our analysis, we define

breakthrough patents according to the 5-year window and 5-percent threshold. As breakthroughs,

like citations, are forward-looking, this measure is also available only through 2011.

An important advantage of KPST’s estimate of patent novelty is its longitudinal consistency.

Kuhn et al. (2020), for example, argue that the nature of patent citations has changed substantially

in recent decades, potentially complicating the use of citations as a measure of quality.9 The KPST

measure avoids this issue by using the same algorithm to analyze all patents’ text. A second advantage

of the KPST measure is its high correlation with productivity growth, which the authors document

in their analysis.

KPSS Patent Value: Kogan et al. (2017) – hereafter KPSS – provide a measure of a patent’s

monetary value by estimating the abnormal returns in a firm’s stock market price on the day it receives

the patent grant. Values are expressed in real terms using 1982 dollars. The most recent vintage

of these data covers over 3.1 million patents granted between 1926 and 2022 that can be matched

to publicly traded firms. Since these values are estimated using public stock data, the number of

patents for which this measure is available is substantially lower than that for external citations

and breakthroughs. On the other hand, because estimation relies only on data contemporaneous to

granting, it is available in our sample through 2016.

Patent value is distinct from our other measures of ideas because it contains the market’s best

8As noted at the beginning of this section, our sample is constructed from patents with application years up to 2016
that were granted by 2021. For some measures we require a five-year forward window, for example for citations received.
Therefore, forward-looking measures are only observed for patents with application years up to 2011.

9Kuhn et al. (2020) shows that the technological similarity of citing and cited patents falls over time, indicating a
change in the information content of a citation, and that the vast majority of recent citations are made by a relatively
small number of patents. Fadeev (2023) argues that external citations mostly capture explicit, voluntary transfers of
knowledge between collaborating firms. Despite this evidence, results using external citations are similar to those using
breakthroughs and patent novelty.
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estimate of the expected returns for that particular idea. In this sense, it contains both of the

relationships we seek to estimate in Equations (4) and (5). Estimated patent value also reflects the

expected private returns to an idea, rather than its societal value. For instance, a patent representing

an important scientific breakthrough that garners many citations may not have a high estimated value

unless its benefits can be captured by the firm. Alternatively, a patent with little scientific merit may

nevertheless be of high value if, for example, it can be used to restrict the firm’s competition. Indeed,

Kogan et al. (2017) find that firms’ productivity rises with their own patent value and falls with the

patent value of their competitors.

3.2 US Census Establishment- and Firm-level Data

US Census Bureau Micro Data: We construct a firm-level panel of employment, payroll, sales,

and R&D expenditure by combining multiple Census Bureau datasets. We start with the Longitu-

dinal Business Database (LBD), which provides employment, payroll, industry, and geography for

all private, non-farm employer establishments from 1976 to 2022 (Jarmin and Miranda, 2002; Chow

et al., 2021). We supplement the LBD with establishment-level sales using the quinquennial Eco-

nomic Census data conducted in years that end in 2 or 7.10 To remain consistent with the Business

Dynamics Statistics, and retain only the highest quality records, we keep only those establishments

that are in scope for the Business Dynamics Statistics data. We also explicitly drop establishments

in Public Administration (NAICS 92) and Agriculture (NAICS 11), since these are out-of-scope for

the Economic Censuses and thus we have no sales or other Census information for them.

We aggregate these establishment-level data to the firm level using the Census Bureau’s cross-

sectional firm identifier (firmid), which we correct for spurious longitudinal breaks that occur when

firms transition between single and multi-unit status. A benefit of the Census establishment-level

data is that we observe every establishment’s primary industry code. We use the vintage-consistent

North American Industrial Classification (NAICS) codes developed by Fort and Klimek (2018) to

track the mix of employment within a firm across sectors over time. We use this measure to assign

firms to their primary sector in each year based on the majority of their payroll. A firm’s sector may

thus change over time as the firm’s mix of establishments changes, or as its establishments change

industries. We also exploit the detailed establishment-level industry information to construct firms’

knowledge-input stocks, as described in more detail below. We follow the BDS to define firm age as

the difference between the current year and the first year of positive employment of the firm’s oldest

establishment in the year that the firmid first appears.

Finally, we merge this firm panel with firm-level R&D expenditures for the subset of firms in

the National Science Foundation’s R&D surveys, collectively referred to as RADS. These surveys

provide information about domestic and foreign R&D expenditures on basic and applied research

for a rotating sample of approximately 45 thousand relatively large firms each year. The surveys

disproportionately target large manufacturing firms, although the sampling frame has expanded over

time. Appendix D provides additional details on the R&D surveys and how we merge them to the

10The Economic Censuses include the Census of Manufactures, Wholesale Trade, Retail Trade, Services, Finance,
Insurance, and Real Estate, Construction, Transportation, Communication and Utilities, and Mining.
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firm-level panel.

3.3 Compustat Firm Panel

We construct a similar firm-level panel using Compustat data. Compustat, a product of S&P Global

Market Intelligence, contains financial information for publicly traded firms derived from companies’

SEC filings, including 10-K and 10-Q forms. Compustat contains a wide range of alternate information

about firms’ global attributes and performance, including their global sales, employment, cost of

goods sold (COGS), Selling, General and Administrative (SG&A), and R&D expenses, which are

constructed from firms’ public filings with the US Securities and Exchange Commission.

3.4 Matching Patents to Firm-level Panel Data

This paper develops a new set of algorithms to match the USPTO patent data to the US Census data

that provide four contributions relative to past work. First, the bridge developed here, termed “BDS-

PF Long,” will be available to qualified researchers with approved projects through the FSRDCs.

The new bridge is also used to produce business dynamics statistics for patenting firms, available

publicly in the BDS-PF on Census’ website.11

Second, the BDS-PF Long matches 92 percent of US-based patent assignee records with a match

precision rate of about 94 percent (see Appendix Tables A.1 and A.6). We developed this match

precision rate using the subset of “fully triangulated” matches from the existing BDS-PF Triangulation

bridge, first developed by Graham et al. (2018) but available only from 2000 forward, treating that

subset as ‘truth.’12 The precision match rate is the number of correct matches divided by the total

number of matches (correct and incorrect). We use this rate, common in matching and machine

learning classification literature, to quantify our match quality and to guide choices in designing our

matching algorithms.

Third, the bridge provides the longest period of matched data, spanning 1977 to 2021. For context,

Kerr and Fu (2008) match roughly 77 percent of patent-assignee records in the 1976 to 2000 period,

versus 94 percent in our new BDS-PF Long for those years. The BDS-PF Triangulation bridge has a

similar match rate as BDS-PF Long, approximately 91 percent of US-based patent-assignee records,

but only provides matches starting in 2000. Appendix Figure A.1 depicts our match rates over time

for both US and foreign patent assignees and compares them to these existing crosswalks.

Fourth, we develop a new method to enhance the longitudinal consistency of matches, exploiting

the persistence of a particular firm in the USPTO data, which allows us to leverage information across

years to improve the quality of matches. To our knowledge, we are the first to develop and share

these new longitudinal matching techniques, which we believe can be applied more broadly to link

other external datasets to the Census Bureau’s micro data.

11For additional information about the FSRDCs, see https://www.census.gov/about/adrm/fsrdc.html and for in-
formation on the public-use BDS tabs see https://www.census.gov/programs-surveys/bds.html.

12The BDS-PF Triangulation bridge uses both firm name and geography matching, along with inventors’ name
and location and corresponding worker employment information from the Longitudinal Employer Household Database
(LEHD) to match patents to firms.
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Matching to Census Business Data: We combine the UPSTO patent data with the Census firm-

level data via name and geography matching. We first collect the universe of employer businesses

from the combined County Business Patterns and Business Register (CBPBR) microdata files. The

CBPBR contains the universe of private non-farm employers in the United States, is constructed

from administrative tax filing records, and provides the backbone for the LBD. Due to the relatively

limited geographic detail available for patent assignees, we match patents at the firm level, though

we exploit geographic information to do so.

To facilitate matching, we extract and standardize business name and geography information

from both PatentsView and the CBPBR. After matching by different combinations of exact and fuzzy

business name and geography, we utilize the PatentsView disambiguated patent-assignee identifiers to

improve the longitudinal consistency of matched Census firm identifiers within a given PatentsView

assignee over time. We match patents to firms by grant year, but for purposes of our analyses

we associated patents to firms using application year so that they are most proximate in time to

innovation investments. As noted at the beginning of this section, because of the typical gap between

patents’ application and grant years, our analysis sample period runs from 1977 to 2016.

We highlight three key findings from our match. First, match rates decline over time, from 95

percent in early 1970s to about 90 percent in the late 2010s. This decline is also apparent in the

Kerr and Fu (2008) crosswalk and is observed in the match between trademarks and firms developed

by Dinlersoz et al. (2018). In Appendix Figure A.3, we show that the declining match rates are

due primarily to the changing composition of the initial match quality to the CBPBR. As shown in

Appendix Figure A.2, the shares of patent-assignee records that do not match to the CBPBR at all,

as well as those that match based upon fewer and noisier characteristics (Block 4) both rise over time.

Appendix A provides further details on the matching algorithms and match quality.

Matching Patents to Compustat: As a complement to our analyses using the Census Bureau’s

LBD, we create a separate match of US patents to the publicly traded firms tracked by Compustat.

As discussed in greater detail in Appendix B, we construct a “meta-match” that combines two recent

patent-to-firm mappings developed by KPSS and Dyevre and Seager (2024). We exploit two mappings

to increase the overall number of patents we can match to Compustat, and to cross-validate patents

encompassed by each approach. As with the LBD, we match domestic patents to firms by application

year so that our matched patent is assigned as closely as possible to year in which its innovation

occurred.

3.5 Patent Coverage in the LBD vs Compustat

Before continuing, we briefly summarize the four patenting measures introduced above and compare

their coverage in the LBD versus Compustat panels. To minimize Census disclosure burden (here, and

throughout the paper), we report averages across 5-year “semi-decades” anchored by quinquennial

Economic Census years ending in “2” and “7”. For example, a data point for 2012 is the average

across 2012 to 2016.

The first panel of Figure 2 summarizes patenting, where the line for “Total” is total domestic

13



patents in PatentsView, i.e., the trend for domestic patents displayed in Figure 1. Here, we see

that the LBD match captures substantially more patents than the Compustat match, and that LBD

coverage declines less steeply, from 89 to 85 percent of all patents in the first semi-decade, versus

from 63 to 55 percent in the final semi-decade. The match rate for patents in our LBD panel is lower

than the crosswalk match rate reported in Section 3.4 for several reasons. First, patents are matched

to firms based upon proximity to grant year. However, our LBD analysis panel associated patents

based upon application year. If we are unable to match a patent to a firm in the application year it

will be unmatched in our LBD panel. Second, patents matched to entities outside our LBD panel,

such as Government establishments or Universities, are unmatched in our LBD panel, even though we

matched the patents to the Business Register. The remaining panels of Figure 2 summarize external

citations, breakthrough patents, and patent value. We find that external citations rise more steadily

throughout the sample period than patents in both the LBD and Compustat, with a sharper increase

in the former than the latter.13

Figure 2: Patents Captured in the LBD and Compustat Panels

Source: PV, LBD, KPSS, KPST, BDSPF-Long, DS, Compustat and authors’ calculations.
Notes: Figure compares LBD- and Compustat-matched domestic patent grants, external citations, breakthrough patents, and
patent value to their totals in the PV data. Patents are defined as domestic if at least one assignee has a US location. External
citations are defined only for matched patents, so no total is reported. Each point represents an average across five-year semi-
decades, e.g., the data point for 2012 is the average across 2012 to 2016. Shading represents US recessions. The last point for
breakthrough and external citations is 2007 (the average of 2007 to 2011) as these measures are forward-looking; see main text
for more detail. Legend for all panels is in the first panel. Patent value is in trillions of 1982 dollars and, as noted in the text,
available for substantially fewer patents than the other series. All series are plotted by patents’ application year.

By contrast, breakthroughs and patent value exhibit a pronounced inverted u-shaped pattern,

increasing sharply in the early 1990s, coincident with the rise of the PC and internet, and then falling

almost as precipitously in the early 2000s, though less sharply for value. Interestingly, the peak for

breakthroughs occurs in the 1992 to 1996 period, whereas the peak for value occurs five years later.

This gap could indicate that it takes time for firms to identify ways of appropriating the value of

breakthrough technologies. Trends for the LBD and Compustat are similar, with the LBD panel

capturing a larger share of breakthroughs, particularly at the peak. Coverage of patent value in the

Compustat and LBD panels is almost identical, which is unsurprising given that it can be estimated

only for publicly traded firms.14

13We use the Census firmid or Compustat permno to classify External Citations, so we do not have a “total” of
unmatched external citations in the second panel.

14Coverage for patent value is slightly higher for Compustat firms at the end of the period, which suggests we
succesfully matched some patents to a Compustat firm but not to a corresponding LBD firm. Such a match failure for
public firm might occur, if for instance, the firm has mutiple identifiers in the LBD that we could not disambiguate.
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3.6 Measuring Knowledge Inputs

Assessing whether ideas are getting harder to find requires measuring the resources firms devote to

finding them, i.e., knowledge inputs. We first follow the literature and measure knowledge inputs

using R&D expenditures. For the LBD panel, we use firms’ total R&D expenditures as reported in

the RADS surveys. For the Compustat panel, we measure knowledge inputs using SG&A and R&D

real expenditures, which past work has used to measure firms’ intangible capital (Corrado et al., 2005;

Eisfeldt and Papanikolaou, 2014). In both cases, we deflate the nominal series using the Consumer

Price Index (CPI).

The RADS cover a small and selected sample of firms that changes over time. To overcome

this limitation, we use establishment payroll data to construct three measures of knowledge inputs

based on firms’ expenditures on likely R&D workers. To identify such workers we focus on estab-

lishments that are most likely involved in knowledge creation, namely those employed in R&D labs

(NAICS 5417). While such labs are appealing due to their clear focus on innovation, they may miss

considerable research efforts. We therefore construct a second measure based on the firm payroll in

Professional, Scientific, and Technical Services as well as Management establishments (NAICS 54-55).

Professional Services and Management (NAICS 54-55) includes establishments engaged in high-skill,

more knowledge-intensive tasks such as engineering, computer system design.15 We include “Manage-

ment” establishments (NAICS 55), since they often employ R&D workers, and because establishments

that perform two or more Professional, Scientific, or Technical Services for other establishments of

their firm are classified in this sector. Finally, we provide an upper bound on firms’ R&D employment

expenditures using their total payroll across all establishments. We deflate all the payroll numbers

using the CPI.16

We transform these knowledge input flows into stocks using the perpetual inventory method, as-

suming a discount rate of 15 percent, consistent with prior literature (Griliches, 1998). We compute

the payroll-based knowledge inputs only for the years in which the firm has the relevant establish-

ment(s), i.e., we do not impute initial stock for firms with the relevant establishments in the first

year of the LBD (1976), nor do we include any “residual” stock that depreciates if the firm closes

the relevant establishments. We make this assumption based on the premise that the establishment

‘houses’ a particular type of knowledge or expertise via its workers, which persists only while that

establishment is alive and has such an industry code. When constructing knowledge stocks based on

the RADS, we assume flows are zero during any gaps in firms’ participation in the survey and set the

resulting stocks to missing in those years. In our results going forward, we only use stocks constructed

from unimputed flows, namely, we drop stocks after gaps in firms’ participation in the RADS.17 We

15NAICS 54 encompasses nine 4-digit NAICS industries: legal (5411), accounting (5412), engineering (5413), design
(5414), computer system design (5415), consulting (5416), R&D (5417), advertising (5418), and other (5419).

16Our ability to count knowledge workers is limited by the fact that the LBD assigns all employment in an establish-
ment to that establishment’s primary NAICS code. Unfortunately, the Census data have limited (or no) information
on worker occupations.

17In undisclosed results, we have computed two variants of knowledge stocks. The first, applicable only to RADS
R&D expenditure, imputes gaps in firms’ survey responses with the average flow of the two endpoints before computing
stocks. The second computes an initial stock for firms present in the first year of the LBD equal to x̄f/(d + g) where
x̄f is the firm’s average observed flow, and d and g are the depreciation and long-run flow growth rates, which we set to
15 and 2 percent, respectively.
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follow a similar approach to compute SG&A and R&D real expenditure stocks for Compustat firms,

though we treat missing flows as true zeros for this subset of publicly traded firms.

Figure 3: Knowledge Inputs

Source: PV, LBD, KPSS, KPST, BDSPF-Long, DS, RADS, Compustat and authors’ calculations.
Notes: Figure reports average annual real aggregate knowledge input flows and stocks across firms in the LBD (left
panels) and Compustat (right panels) samples, by semi-decade. In the first two panels, knowledge inputs are firms’
total, Professional Services and Management (NAICS 54-55) , and R&D lab (NAICS 5417) payroll, and RADS R&D
expenditure. In the right two panels, they are total SG&A and R&D expenditures as recorded in Compustat. Series
are normalized to 1 in the first semi-decade. Figure f kflow compustat title.png generated in pks30.do.

For each input, the first two panels of Figure 3 report average aggregate flows and stocks across

firms in the LBD by five-year semi-decades, normalized to be 1 for the 1977 to 1981 period. As

indicated in the first panel, aggregate real total payroll flows nearly double between the first and last

periods. Real Professional Services and Management (NAICS 54-55) and R&D lab (NAICS 5417)

pay rise more quickly, each by a factor of about 3. Unsurprisingly, the path of R&D expenditure

flows follow those of R&D lab (NAICS 5417) payroll fairly closely, both rising by 2.9 times between

the first and last periods. However, during the mid- and late 1990s, R&D lab (NAICS 5417) payroll

rises more quickly than R&D expenditures, then grows more slowly through the 2000s. The second

panel reports analogous averages for stocks, which rise more quickly than flows given the magnitude

of the flows and the constant 15 percent depreciation rate assumed in their calculation.

The right two panels of Figure 3 depict the SG&A and R&D real expenditure flows and stocks

across all Compustat firms by semi-decade, again normalized to 1 in the first period. As indicated

in the figure, Compustat SG&A flows and stocks are broadly comparable to those for Professional

Services and Management (NAICS 54-55) payroll, while Compustat R&D flows and stocks are similar

to those for RADS R&D expenditure in the LBD panel. In the Compustat panel, we see SG&A stocks

rising by about 7 times and R&D expenditures rising by over 9 times between the first and last periods.

4 The Evolution of US Patenting Activity by Firm Type

In this section, we provide three new facts about the evolution of patenting firms in the United States

over the last four decades. We first exploit the LBD panel to document significant shifts in the

industry, size, and age distributions of patenting firms. We then demonstrate that these changes are

largely missed when relying on the publicly traded firms captured in Compustat.

We decompose LBD firms’ patenting activity along three dimensions: the firm’s major sector of

16



activity (based on payroll), the firm’s size according to employment, and the firm’s age. To summarize

how these activities have changed over time, we provide separate decompositions for each decade from

the 1970s to the 2010s, where the first and last decades consist of 1977 to 1979 and 2010 through

2016, respectively.

Figure 4: Patenting Activity by Firm Sector, Size and Age (LBD Panel)

Source: PV, LBD, KPSS, KPST, BDSPF-Long, and authors’ calculations. Figure provides a breakdown of patents, external
citations, breakthrough patents, and patent value by LBD firms’ major 2-digit NAICS sector, size and age. Bars representing
less than 0.5 percent of patents are suppressed.

The top row of Figure 4 reveals a steady decline in manufacturing firms’ share of patenting

activity, which declines from 78 to 30 percent over the sample period. This decline is even starker for

citations, breakthroughs, and value, which decrease from above 70 percent in the 1970s to 23, 12, and

18 percent, respectively, by the 2010s. By contrast, firms in Information (NAICS 51), Professional

Services and Management (NAICS 54-55) and Wholesale (NAICS 42) sectors exhibit steady relative

growth over time.18 Indeed, firms in Professional Services and Management have larger activity shares

than Manufacturing firms in the final decade across all four patent measures. Firms in Information

are the most prominent for breakthrough patents in the 2000s and 2010s, accounting for 37 percent

18The Information sector includes Software Publishing (5112), Telecommunications (5173-79), and Data Processing
(5182). The constituents of Professional Services are listed in footnote 15.
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of breakthroughs in the last decade. We summarize these stark patterns in our first fact:

Fact 1. US patenting was dominated by manufacturing firms from 1977 until 2000. During the 2000s,

manufacturing firms’ shares of patenting activities fell to 42 percent of total patents, 33 percent of

external citations, 16 percent of breakthrough patents, and 18 percent of patent value. By the 2010s,

firms in Information, Professional Services, Management, and Wholesale dominate US patenting.

The rise in patenting among Wholesalers and Professional Services firms is consistent with the

increasing prevalence of factoryless goods producers – firms that design goods and coordinate the

production process, but outsource physical transformation tasks to other firms, increasingly in other

countries (Bernard and Fort, 2015; Kamal, 2023; Fort, 2023). The rising importance of firms with

Management as their primary sector is also suggestive of US multinationals’ strong role in US inno-

vation, since past work documents their disproportionate employment in that sector (Kamal et al.,

2022). An interesting question for future work is to assess whether and how these patenting firms are

directly involved in foreign manufacturing activities.

The middle row in Figure 4 depicts the declining dominance of mega-firms – those with more than

10 thousand US employees – in US patenting. In the late 1970s, these firms accounted for the majority

of all four patent measures: 58 percent of patents and citations, 69 percent of breakthroughs, and 89

percent of patent value. By the 2010s, their share of patents, citations, and value had fallen over 15

percent, to 48, 49, and 72 percent, respectively. These firms’ declining shares of patents contrasts with

their rising shares of employment. As shown in Figure 5, mega-firms employ 25 percent of workers in

the 1970s versus 28 percent in the 2010s.

Mega-firms’ share of breakthroughs evolves differently from other measures, as it is U-shaped over

time: larger in the 1970s and 2000s, but smaller in the 1980s and 1990s, which aligns with evidence

in Braguinsky et al. (2023).19 Instead, firms with 100 to 500 employees almost double their share of

breakthroughs in the 1980s, while in the 1990s firms with 2,500 to 10 thousand workers jump from 10

to 16 percent of these breakthroughs. These changes likely reflect a combination of strong growth by

firms with such patents as they transition across size bins, along with potential changes in the types of

firms that innovate successfully in different periods. For example, the 1990s witnessed an explosion of

electrical engineering patents during the personal computer and internet boom (see Appendix Figure

A.8).

Figure 4 also reveals a rising share of patent grants and citations by the smallest firms – those

with fewer than 20 employees. Their share of patent grants increases steadily over the sample period,

from 7 percent in the 1970s to 10 percent in the 2010s. This pattern is quite remarkable in light of

the general shift towards large-old firms in the United States. For instance, as shown in Figure 5, the

share of employment in such firms falls from 22 percent in 1977 to 18 percent over the period.

The bottom row of Figure 4 illustrates how patents are distributed across firms of different ages.

Since we construct firm-age bins using the minimum year of the firm’s oldest establishment when

19Those authors define novel patents as those that combine two technology classes for the first time and find that
mega-firms’ importance in such patents also exhibits a u-shaped pattern over that period.
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Figure 5: Firms and Employment by Firm Sector, Size and Age (BDS)

Source: BDS and authors’ calculations. Figure provides a breakdown of US firms and employment
by firms’ major 2-digit NAICS sector, size, and age as reported in Census Bureau’s publicly
available Business Dynamics Statistics (BDS) database available at https://www.census.gov/

programs-surveys/bds.html. Bars representing less than 0.5 percent of patents are suppressed.

the firm’s identifier (firmid) is first observed, age is left-censored in different years for different

categories. By the 1990s, all firms can be categorized as at least 13 years old, so the first three bins

are not censored.

There are several notable patterns about patenting and firm age. First, younger firms (0 to 10

years old) have a disproportionate share of citations relative to their granted patents in each of the

decades for which we observe their age. In the 1990s, 2000s, and 2010s, they account for 15, 14, and 13

percent of grants versus 19, 18, and 17 percent of cites. Second, the oldest firms’ increasingly produce

a disproportionately low share of high-impact patents. By the 2010 decade, left-censored firms account

for 55 percent of granted patents, versus just 49 and 48 percent of citations and breakthroughs. By

contrast, firms between 11 to 20 years old account for 24 percent of breakthrough patents in the last

decade, even though they receive just 13 percent of granted patents (and 15 percent of employment).

The youngest firms (0 to 5 years) maintain a steady share of patent grants and citations from the

1980s to the 2010s (about 7 and 10 percent, respectively), while their share of breakthroughs drops

from 9 to 5 percent. We summarize these findings on firm size and age in the following second fact:

Fact 2. Large and old firms dominate US patenting, though mega-firms’ (those with more than 10

thousand employees) share of patents and citations fall to less than 50 percent by the 2010s. Mega-

firms are especially dominant in breakthrough patents, accounting for 69 percent in the late 1970s

and 67 percent in the 2010s, though only 59 percent in the 1990s. Despite mega-firms’ dominance

of breakthroughs, medium-aged firms (11 to 19 years) are increasingly important for breakthrough

patents, accounting for almost a quarter of breakthroughs compared to only 13 percent of total granted
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patents by the 2010 decade.

The changing patterns of firm size and age in US patenting activity present a range of potential

explanations for the changes in aggregate patents per R&D input documented in past work. Young

and small firms may be better able to create new ideas, but less equipped to bring them to market

such that they raise growth. If breakthroughs are the only patent types that lead to growth, then

their level decline and lower mega-firm share in the 1990s could also be responsible for the apparent

fall in researcher productivity in that period. The recovery by this small set of large firms may also

signal a changing market structure in which innovators themselves grow, even as they acquire other

firms and stifle competition. In the next section, we estimate the elasticity of patents to knowledge

inputs in a manner that allows us to control for the types of firms that patent.

Figure 6: Patenting by Firm Sector, Size and Age (Compustat Panel)

Source: PV, KPSS, KPST, DS, Compustat and authors’ calculations. Figure provides a breakdown of patents, external citations,
breakthrough patents and patent value by Compustat firms’ major 2-digit NAICS sector, size and age. Firms’ sectors are time-
invariant. Firm age represents time years Compustat. Bars representing less than 0.5 percent of patents are suppressed.

We conclude this section by illustrating the limitations of Compustat data for analyzing US

patenting. Figure 6 replicates Figure 4, but using the Compustat panel. Three features of the

Compustat data must be kept in mind when comparing the results. First, Compustat does not
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contain information on the full range of firms’ establishments, so we rely on the single NAICS code

reported for each firm in that dataset to determine its major sector.20 Second, employment reported

in Compustat can include workers outside the United States, whereas the LBD includes only US

workers. Finally, firm entry in Compustat indicates going public (i.e., entering Compustat), not

birth. As a result, age captures the firm’s length of time as a public company, instead of its time in

existence.21

With these caveats in mind, Figure 6 demonstrates that patenting activity among Compustat firms

differs markedly from that of the LBD panel. In terms of sector and size, it tilts more substantially

towards manufacturing and large firms. Indeed, in the final decade of the sample manufacturing firms

and mega-firms account for 60 and 80 percent of patents in the Compustat panel versus 30 and 48

percent in the LBD panel. Young firms appear to patent more in the Compustat panel, though this

pattern most likely reflects our inability to measure age prior to going to public in this sample. We

summarize these findings in a third fact:

Fact 3. Compustat data miss the massive shift in US patenting away from manufacturing firms

over the last four decades: those data overstate manufacturing firms’ share of US patent grants and

citations by 30 and 41 percentage points in 2010. Compustat data also miss the substantial decline

in mega-firms’ (those with employment greater than 10 thousand) patenting shares, overstating their

dominance in the 2010s by 28 percentage points for breakthroughs to 67 percentage points for granted

patents.22 Such firms account for 48, 49, and 67 percent of US patents, citations, and breakthroughs

among the universe of US firms in 2010, versus 80, 79, and 86 percent among publicly traded firms.

Having established two new facts about the evolution of firms involved in US patenting, and

demonstrated the limitations of documenting such patterns using the subset of publicly traded firms,

we now turn to analyzing whether and how firms’ ability to translate knowledge inputs into patents

has changed over this period.

5 Estimating Knowledge Elasticities

In this section, we analyze whether and how the efficiency of firm patenting with respect to R&D inputs

has changed over time. We first provide simple “efficiency” figures that depict different measures of

patents per real R&D expenditure by semi-decade. We next exploit the detailed firm-level data to

estimate time-varying patent elasticities, controlling for both firm and time fixed effects. We then

discuss how these elasticities and fixed effects are interpreted through the lens of the macro-growth

models.
20We use the time-invariant, contemporaneous NAICS codes provided by Compustat (naics) in constructing this

figure. While Compustat also reports historical NAICS codes (naicsh), these are missing for approximately one fifth
of our panel. In a future iteration of this draft, we plan to concord the historic SIC codes (sich) to NAICS for this
comparison, but note that using the contemporaneous NAICS should overstate Compustat firms’ non-manufacturing
activities in the past, but should not miss the shift out of manufacturing in later years.

21While Loughran and Ritter (2004) provide data on Compustat firms’ actual founding dates, this information is only
available for about one third of the observations in our 1977 to 2017 sample.

22(80-48)/48=0.67 and (86-67)/67=0.28.
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5.1 Patents per R&D Input

The top row of Figure 7 presents “simple” patent efficiency – patent activity per knowledge flow

– over time in the LBD. We minimize Census disclosure burden, as above, by reporting results by

semi-decade, and by displaying trends only with respect to the broadest and narrowest knowledge

inputs: real total payroll and real R&D expenditure.23 All firms are included in the former, while the

latter is restricted to the firms in each year that appear in the RADS surveys. All ratios are indexed

to 1 in the first, 1977 to 1981 semi-decade.

Figure 7: “Simple” Patent Efficiency

Source: PV, LBD, KPSS, KPST, RADS, BDSPF-Long, DS, Compustat and authors’ calculations. Notes: Top row

reports patents, breakthroughs, external citations, and patent value per payroll or real R&D expenditures for the LBD

panel. Second row reports analogous ratios with respect to real SG&A and R&D expenditures for the Compustat

panel. Ratios are averages across 5-year semi-decades from 1977 to 2012, and these averages are indexed to 1 in the

first, 1977 to 1981 semi-decade. Patents are assigned to firm by application year. In the LBD panel, the set of firms

included in the R&D line is restricted to those appearing in the R&D surveys in each year.

The first panel in Figure 7 depicts total granted patents per real R&D dollar. This measure

falls from 1977 to 1982, grows steadily during the 1980s and 1990s, declines after 2002, and starts

recovering after 2007.24 Patents per total real payroll seem to grow more steadily throughout the

period, with the exception of the 1997 to 2007 decade when they are flat. This divergence can be

explained by: a) differences in the samples – the total payroll line includes all firms’ US patents while

23Prior work divides R&D expenditures by R&D worker wages to infer the number of researchers in these calculations.
We deflate expenditures by the CPI to allow for heterogeneity in researcher ability that would likely be captured in
greater real expenditures.

24Recall that we present forward-looking five-year averages, so the 2002 number captures the average ratio between
2002 and 2007.
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the blue line encompasses only patents by firms in the RADS surveys; and b) the relatively faster

growth of R&D expenditure than payroll depicted in Figure 3.

This first panel in the bottom row of Figure 7 depicts analogous efficiency measures for the subset

of Compustat firms, but with very different patterns. Patents per R&D fall initially, rise from 1987

to 1992, and then fall until 2007 after which they start to recover. Patents per R&D expenditure

by 2012 are almost on par with the initial 1977 value. The pattern for SG&A is similar, though

with more growth such that the final level is about 1.3 times the initial level. For patents per R&D

expenditure, the overall decline between 1977 and 2007 aligns with past evidence used to motivate

explanations for the deterioration of US researchers’ ability to generate ideas (e.g., Kortum, 1997).

In contrast to the declining number of patents granted per R&D dollar, the second panel of

Figure 7 shows that external citations per R&D dollar rise more or less steadily among both LBD

and Compustat firms, though growth tails off between 1992 and 1997 among the Compustat firms

and between 2002 and 2007 among LBD firms. There is no such decline for external cites per total

payroll in the LBD or per SG&A in Compustat.

The last two panels in Figure 7 depict breakthrough patents and patent value per R&D expendi-

ture. These panels paint a very different portrait of patent efficiency. The number of breakthrough

patents per R&D dollar surges from 1987 to 1992 and then plummets back to about its 1987 level by

2002 for both LBD and Compustat firms. Patent value per R&D dollar displays a similar pattern,

though the peak and rise occur five years later. These spikes align with the internet revolution and

dot-com frenzy of the late 1990s, suggesting a link to the arrival of an entirely new set of technologies.

The lagged response of patent value suggests it may take time for firms to figure out how to use new

technologies or for investors to factor them into their growth expectations.

The depictions of patent activity per R&D expenditure in Figure 7 reinforce the fact that different

measures and samples of R&D inputs and outputs can change the conclusions we draw on researcher

efficiency. We therefore turn to estimating patent elasticities in a regression framework that allows us

to incorporate firm and year fixed effects that might obscure changes in this fundamental relationship.

5.2 Patent Elasticity Estimates

We estimate time-varying elasticities of firm-level patents to R&D expenditures using Poisson-Pseudo

Maximum Likelihood (PPML),

Yft = exp

 ∑
j=1977(5)k

ηjd[j]ft × ln(KnowledgeStockft) +
∑

j=1977(5)k

γjd[j]ft + γf + ϵft

 , (6)

where Yft is firm f ’s patent output – patent grants, breakthroughs, external citations, or value – in

year t. Dummies d[j]ft are equal to 1 for years t in semi-decade j. For example, j = 1977 encompasses

years 1977 to 1981, while j = 2012 represents years 2012 to 2016. The sample period is 1977 to 2016

for patent grants and patent value, and 1977 to 2011 for the five-year forward-looking breakthroughs

and external citations. The last semi-decade in the sample is therefore either k=2007 or k=2012. ηj
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is the elasticity of interest, capturing the marginal change in patent output with respect to a change

in firm f ’s real knowledge-input stock during semi-decade j. γj are semi-decade fixed effects that

capture average idea creation by semi-decade that is common to all firms in the sample in those

years.25 γf capture average patents over the entire sample period for each firm in the sample.

We consider four real knowledge-input stocks in the LBD panel: capitalized total payroll, Profes-

sional Services and Management (NAICS 54-55) payroll, R&D lab (NAICS 5417) payroll, and R&D

expenditure from RADS.26 In each case, the set of firms included in the estimation is restricted to

those for which we observe an input flow in that year, as we set stocks to missing (as discussed in

Section 3.6) if flows are not present. For the payroll-based stocks, this refinement is equivalent to

dropping firms in any year in which they do not have those establishments. For the LBD R&D stock,

firms are dropped when they do not appear in the RADS. Standard errors are clustered by firm.

Figure 8: Estimated Patent Elasticities by Semi-Decade (ηj)

Source: PV, LBD, KPSS, KPST, RADS, BDSPF-Long, DS, Compustat and authors’ calculations. Notes: Figure

reports estimates of ηj ’s from Equation 6 by patenting activity and knowledge stock for the LBD and Compustat

panels. Whiskers denote 95 percent confidence intervals. Standard errors are clustered at the firm-level.

Surprisingly, we find flat or rising elasticities for patents, external citations, and breakthroughs

in almost all cases. The top row of Figure 8 plots our estimates of ηj for the LBD panel. The

first panel in this row depicts a fairly steady increase in firms’ patent elasticities over time across all

four knowledge stocks. For total pay, the elasticity rises from 0.46 to 0.62 between the first and last

25We estimate elasticities at the semi-decade frequency and use semi-decade fixed effects to minimize Census disclosure
burden. Estimations employing year fixed effects yield analogous conclusions.

26We use knowledge input stocks rather than flows to capture the idea that flows in one year may affect idea creation
for several years. Hausman et al. (1984) explore different lag structures and find that such lags do not add much
explanatory power once firm fixed effects are included.
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semi-decade, indicating that a 1 log point increase in payroll is associated with 0.16 (=0.62-0.46) log

point more patents at the end versus beginning of our sample period.

The sizes of our estimated elasticities for R&D expenditures here are in line with those based

on R&D flows in Hausman et al. (1984), who regress patents for 128 firms from 1968 to 1974 on

contemporaneous R&D expenditures using a Poisson specification with firm fixed effects and a time

trend. They find a same-year elasticity of 0.31 when lags for the previous 5 years are included, and

0.35 when lags are excluded (see their Table 2). However, when also including an interaction of the

time trend with current R&D expenditures, their estimates imply a decline in the elasticity from

0.48 to 0.34 over their eight-year sample period. We estimate an elasticity of 0.26 for R&D (RADS)

expenditures in the 1977 to 1982 period, versus 0.48 in the 2010 decade. The magnitudes of our

coefficient estimates are thus similar, even as their evolution moves in the opposite direction in our

later and much longer sample period.

The trends in elasticities for patents weighted by external citations in the second panel are flatter

than for patenting, though still flat or rising for all inputs except R&D lab (NAICS 5417) pay. The

elasticities for breakthrough patents in the third panel are flat for that knowledge stock, while rising

for the other three. Across the four knowledge stocks, patent elasticities are generally highest for the

total payroll stock and lowest for R&D lab (NAICS 5417) pay. These differences likely arise because of

the very different levels in patenting across firms. The regression sample for the total pay elasticities

includes all firms in the US economy, the vast majority of which do not patent. By contrast, the

sample for the R&D lab (NAICS 5417) elasticities is restricted to firms with R&D lab (NAICS 5417)

employment, which is a small subset of firms that perform R&D. Mean patenting among all firms is

clearly lower than among firms with an R&D lab (NAICS 5417).

The first three panels in the first row of Figure 8 suggest that among LBD firms, R&D inputs are

at least as efficient at producing ideas by the 2000s as they were in the 1970s. The corresponding

panels in the second row of Figure 8 indicate that this trend is also true among Compustat firms. This

similarity in LBD and Compustat regression results here – in contrast to the descriptive statistics

discussed in Section 4 and the simple patenting per input flows displayed in Figure 7 – highlights the

importance of using firm and year fixed effects to better understand the way in which ideas might

be getting harder to find. Indeed, for assessing researchers’ efficiency, we get a remarkably similar

message across knowledge inputs and firm samples.

As a first step towards assessing the link between knowledge inputs and growth, the final panel of

each row of Figure 8 displays analogous estimated elasticities for patent value. Recall that patent value

captures both the granting of a patent and investors’ expectation of the future value of that patent

to the patenting firm. In contrast to the flat or rising trends found for patents, external citations,

and breakthroughs, these elasticities decline noticeably over time. For the total payroll stock, they

fall by half, from 0.61 to 0.32, while for the Professional Services and Management (NAICS 54-55)

payroll and R&D expenditures stocks, they decline from 0.43 and 0.28, respectively, in the initial

period to zero. For the R&D lab (NAICS 5417) payroll stock, they fall below zero to -0.19 in the final

period, suggesting additional R&D lab (NAICS 5417) workers lead to less valuable patents. Results
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are comparable among Compustat firms.27

The starkly different trends for patent value versus patents, external citations, and breakthroughs

suggests that firms may find it increasingly difficult to translate ideas into growth, even as researchers’

efficiency improves.28 This difficulty may be driven by several factors. New ideas may cannibalize old

ones, both within and across firms (e.g., Antràs et al., 2024). Evidence in favor of this mechanism is

presented by KPSS, who show that firm growth responds negatively to greater patent value creation

among competitor firms in the same sector. As technologies mature, such cannibalization effects

may get stronger and dominate any potential complementarities. Another possibility is that new

ideas lead to technological change, which in turn alters the innovators’ competitive environment. For

example, the internet revolution ushered in a new technology sector in which production features

high fixed costs, low marginal costs, and significant network effects. That sector is now dominated by

handful of large firms with considerable market power and resources, which may provide incentives

and capabilities to restrain output and stifle competition, for instance via acquisitions (e.g., Cabral,

2024). In Section 6, we estimate the relationship between ideas and growth directly. Before that,

however, we discuss the economic interpretation of our patent elasticity estimates.

5.3 Mapping the Estimates back to Theory

The assertion that “ideas are getting to harder to find” is often interpreted as a decline in researcher

productivity, which might be interpreted as a decline in Romer’s δ in equation 1.29 In contrast to

this interpretation, the positive and generally increasing patent elasticity estimates (η̂j) displayed in

the first three panels of Figure 8 point to flat or rising researcher efficiency.

An alternative interpretation of the claim that “ideas are getting harder to find” is that the

average number of ideas per firm is falling, even after controlling for firms’ average patenting abilities

and changes in their use of knowledge inputs. Under this interpretation, “ideas getting harder to

find” implies a secular decline in the time fixed effects from equation (6) that affects all firms equally,

regardless of their knowledge-input use. In the semi-endogenous growth models, decreases in these

time effects are driven solely by the rising stock of existing ideas (i.e., A−β, where β measures the

concavity in the growth rate of new ideas as a function of the existing stock). In practice, the

estimated time effects also capture changes in patenting laws, macro-economic fluctuations, or any

other shocks that affect all firms similarly.

To make further progress on understanding whether “ideas might be getting harder to find,” we

broaden our discussion of the regression results from the last section to consider how the patent elas-

ticity estimates, the time fixed effects, and the firm fixed effects combine to predict actual patenting.

The firm fixed effects capture average patenting over the period by firms in the sample, after con-

trolling for variation in their use of knowledge inputs. While these effects are time-invariant for each

27In both panels, we obtain similar results for patents, external citations, and breakthroughs when restricting estima-
tion for those outcomes to the set of patents and firms for which we observe value. For the LBD panel these results are
not yet disclosed. For the Computsat panel, see Appendix Figure A.9.

28We investigate the relationship between knowledge inputs and patent outcomes further by estimating separate
elasticities for counts of low- versus high-citation, -novelty, and -value patents in Appendix H.

29For example, Bloom et al. (2020) state in their abstract “...researcher efforts are rising substantially while researcher
productivity is declining sharply...”
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firm, their contribution to predicted aggregate patenting will vary over time as the sample compo-

sition changes. The time fixed effects measure average patents in each semi-decade by all the firms

in a particular sample, again after controlling for changes in their use of knowledge inputs as well as

average firm patenting via the firm fixed effects. These semi-decade fixed effects thus capture varia-

tion over time in patenting common to all firms, as well as any compositional differences in patenting

growth rates by entrants and exiters for a particular sample.

Figure 9: Predicted Growth in Patenting from Elasticity Estimates (Compustat Panel)

Source: PV, LBD, KPSS, KPST, RADS, BDSPF-Long, Compustat and authors’ calculations. Notes: Figure reports

growth in patents, external citations, breakthrough patents and patent value over the 1977 to 2007 (external citations,

breakthroughs) or 2012 (patents, patent value) sample period.

Figure 9 displays the role of each of these factors in matching the data by plotting actual patents

by Compustat firms, along with their predicted patents as each of the factors above is added sequen-

tially.30 The blue lines plot predicted patents using firms’ observed knowledge inputs and estimated

patent elasticities. For both patent grants and breakthroughs, the rising elasticities and knowledge-

input use over-predict firms’ patenting output. Adding in the firm fixed effects generally shifts the

predicted line down to match the level of patenting by Compustat firms, without altering its shape

significantly (red line). Finally, adding the semi-decade fixed effects changes the overall trend so that

it aligns with the actual data (yellow line).

We emphasize two main points from this Figure. First, the semi-decade effects play a key role

in reconciling the predicted time-series behavior of patenting activity with what is actually observed

in the data. As explained above, steady decreases over time and across samples in these time fixed

30We present the results for Compustat firms only at this stage to minimize disclosure. If these figures prove compelling
in presentations, we will also construct them using the LBD panel.
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effects could reflect the type of concavity in the production of ideas suggested by Jones (1995). Firms

might still patent relatively more in those periods in which they use more knowledge inputs, even

as overall patenting for all firms, regardless of their innovative efforts, declines. If the time fixed

effects fall more as the aggregate stock of ideas grows, this would support the notion of existing ideas

‘crowding out’ new ideas captured by β > 0 in equation (3). The time fixed effects could also vary

over the period due to changes in patenting laws, changes in firms’ desire to protect innovations via

patents, or even entry or exit into the sample of firms with different patenting growth rates.

To examine these time effects more closely, we plot them in Figure 10 for both the LBD and

Compustat samples. The first panel in the top row displays steadily falling semi-decade fixed effects

for patent grants by all firms (total pay line) and firms in the RADS (R&D line). By contrast,

there is no statistically significant decline in the time fixed effects for firms with Professional and

Scientific (NAICS 54-55) pay or R&D lab (NAICS 5417) pay. Compustat firms’ semi-decade fixed

effects initially decline but then rise back to their initial level, consistent with the over-prediction of

patenting based solely on estimated elasticities (blue line) in Figure 9.

Figure 10: Estimated Semi-Decade Fixed Effects (γj)

Source: PV, LBD, KPSS, KPST, RADS, BDSPF-Long, Compustat and authors’ calculations. Notes: Figure reports

estimates of γj from Equation 6 by patenting activity and knowledge stock for the LBD and Compustat panels.

Whiskers denote 95 percent confidence intervals. Standard errors are clustered at the firm-level.

The second panel of Figure 10 displays flat or rising time effects for external citations, with par-

ticularly strong growth among Compustat firms. Recall that this measure contains external citations

over a five-year window after the patent’s grant, so it will not automatically rise over time. Indeed,

Appendix Figure A.14 plots the same estimates using a balanced panel of Compustat firms and dis-

plays relatively flat semi-decade fixed-effect estimates, suggesting that the growth here arises from
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the changing composition of the sample. On average, Compustat firms are accruing grants with

higher citation counts over the period, even after controlling for their use of knowledge inputs and the

average patenting of firms in the sample. The semi-decade fixed effects for patent value display even

more consistent increases over time. The stock market’s expected returns from new patent grants

thus exhibit a secular rise for all publicly traded firms, even as the expected returns from firms’ R&D

efforts decline (Figure 8).

The second key message from Figure 9 is that all firms experience a surge and subsequent decline

in breakthrough patents midway through our sample period that is not predicted by their knowledge-

input use. This surge – also evident in the semi-decade fixed effect estimates in Figure 10 – occurs

during the internet boom, suggesting the possibility that a new class of ideas demonstrates initially

explosive growth and then tails off over time. Such a tailing-off seems precisely in line with the

case study evidence in Bloom et al. (2020). Crucially, however, this tailing-off need not continue

indefinitely, since the discovery of an entirely new area remains possible (e.g., the recent AI boom).

Indeed, Evenson and Kislev (1976) model applied research as having diminishing returns within the

distribution of a particular set of ideas, while basic research is used to discover new distributions. We

note that the semi-decade fixed effects recover to their initial levels for some of the firm samples by

2007 (e.g., NAICS 54 -55 and 5417 pay).

To summarize, US researchers’ patent efficiency (η̂j) – one of the ways of interpreting “ideas are

getting harder to find” – does not decline over our 46-year sample period. If anything, the elasticity of

ideas to R&D efforts has risen. This fact, however, is perhaps not what the semi-endogenous growth

models have in mind. Indeed, those models assume that Romer’s δ (i.e., researcher productivity) is

constant over time and instead posit a declining growth rate of ideas in response to a growing stock

of ideas. While the semi-decade fixed effects (γ̂j) for patent grants and breakthroughs decrease for

some specifications after 1997, this pattern is not universally true across all measures of knowledge

inputs. Moreover, citations and patent value exhibit flat or rising secular trends. These patterns

are inconsistent with a secular decline in patenting activity as the aggregate stock of ideas grows,

motivating our examination of the link between ideas and growth in the next section.

6 Estimating the Link Between Growth and Ideas

The previous section demonstrates that researcher efficiency in terms of the elasticity of patenting

to knowledge input stocks (η̂j) is flat or rising over the last five decades. It also shows that average

patenting by semi-decade across firms, after controlling for knowledge-input use and firm fixed effects,

declines for some measures of patenting but is flat or rising for others. Given these results, why has

aggregate growth has not kept pace with rising researcher efforts?

To address this question, we now examine the link between ideas and growth. A key assumption

in many of macro-growth models is that growth in ideas (Ȧ) maps one-to-one with growth in output,

and that this relationship is constant over time.31 Yet as noted in the introduction, the evidence

connecting ideas to growth is fairly limited. A better understanding of this relationship may be

31For example, Bloom et al. (2020) note that they “...follow much of the literature...and define ideas to be in units so
that a constant flow of new ideas leads to constant exponential growth in A” (p. 1108).
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helpful in inspiring additional models of long-run growth.

Toward that end, we examine the link between patenting and firm growth, allowing the relationship

to vary over time. Specifically, we estimate:

DHS
(
Xt:t+τ

f

)
=αDHS

(
Employmentt:t+τ

f

)
+

∑
j=1977(5)k

µτ
j d[j]f,t ×DHS

(
IdeaStockt:t+τ

f

)
+

∑
j=1977(5)k

ϕτ
j d[j]ft +

∑
b=1:5

ρτk1{SizeBinb}+ ντft,
(7)

where the left hand side is the Davis et al. (1996) (DHS) growth rate of firm f ’s sales between years t

and t+τ . The first term on the right-hand-side of the equation is the contemporaneous DHS growth

rate in employment. µτ
j is the elasticity of interest, capturing the relationship between sales growth

and firm’s contemporaneous growth in their stock of ideas.32 As in our earlier regressions, ϕτ
j represent

semi-decade fixed effects. These coefficients capture time-varying changes in growth common to all

firms. The final term on the right-hand-side is a control for firm size.

Figure 11: Time-Varying Estimates of µτ
j from Equation 7

Source: PV, KPSS, KPST, Compustat and authors’ calculations. Notes: Figure reports relationship between Com-
pustat firms sales and idea stock growth between years t and t+4 (µ4 from Equation 7). Whiskers denote 95 percent
confidence intervals. Standard errors are clustered at the firm-level.

At present, we include results only for our Compustat panel. We plan to add analogous estimations

using the LBD in a future draft. Estimates of the relationship between sales and ideas for τ=4 (µ4
j )

along with their 95 percent confidence intervals, are reported in Figure 11. As indicated in the figure,

we generally find a positive relationship between the two variables across idea stock measures over

32Idea stocks are computed analogously to the knowledge stocks considered in the last section.
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our sample period, with no real trend.

Figure 12 reports the semi-decade fixed effects from estimation of equation 7, along with their 95

percent confidence intervals. As indicated in the figure, we generally find a negative trend in these

fixed effects over time, indicating that growth, conditional on ideas, is getting harder to find.

Figure 12: Year Fixed Effects from Equation 7

Source: PV, KPSS, KPST, Compustat and authors’ calculations. Notes: Figure reports the semi-decade fixed effects
for τ=4 (ϕ4

j from Equation 7). Whiskers denote 95 percent confidence intervals. Standard errors are clustered at the
firm-level.

7 Conclusion

We build a novel 46-year firm-level panel to study the evolution of US patenting. In contrast to the

notion that ideas are getting harder to find, we show that the elasticities of patent grants, external

citations, and breakthrough patents with respect to six different measures of R&D inputs are flat or

rising over time. Researcher efficiency has not declined over the last five decades.

We also estimate semi-decade fixed for these measures of US patenting activity across five samples

of firms and for the same six knowledge inputs. These fixed effects capture average patenting in a

particular sample and time period, after controlling for those firms’ average patenting and changes in

knowledge inputs. A secular decline in these time effects might reflect an aggregate ‘crowding out’ of

ideas as the pool of total ideas grows. While the estimated semi-decade fixed effects decline steadily

for patent grants and breakthrough patents in two samples of firms, they do not for others. Most

notably, the estimated time effects for external citations and patent value are flat or rising on average

over time.

To reconcile these patterns with the fact that aggregate growth rates have held fairly steady even
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as research inputs have increased, we study the mapping between ideas to growth. In line with the

observation in Romer (1990) that ideas may be complements, substitutes, or a mix of both in final-

good production, we document considerable variation in the relationship between ideas and growth,

both across different types of ideas and over time. These results point to a new path for macro-growth

models to explore when reconciling their aggregate predictions to the data.

Our analysis provides an optimistic view of human’s innovative capacity and our ability to sustain

long-term growth. The semi-endogenous growth models assume that ideas get harder and harder to

find as our stock of knowledge grows and imply that population growth is the only way humans can

continue to improve their living standards. By contrast, our analysis shows that, at least over the

last five decades, ideas don’t seem to crowd each other out.
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Online Appendix for

What Does “Ideas Are Getting Harder to Find” Mean, Exactly?∗

Teresa C. Fort† Nathan Goldschlag‡ Jack Liang§ Peter K. Schott¶ Nick Zolas‖

A Matching Patents to Census Business Data

This appendix section describes how we match patent assignees from the United States Patent and

Trademark Office (USPTO) data to Census Business microdata files from 1977 to 2021, the latest

available year of microdata.

A.1 Data Preparation and Cleaning

The BDSPF-Long match process first prepares the USPTO patent data and the combined County

Business Patterns and Business Register (CBPBR) microdata files. On the patent-assignee side, we

combine extracts from Google patent XML files with additional information on assignees (such as

county) from the PatentsView data. We augment patent-assignee geography with location information

on inventors, attaching each unique geography among a patent’s inventors to the assignee. This

addition allows us to search within the inventors’ geography for a business name match for the

assignee, in addition to the assignee’s geography listed on the patent.

To reduce computational burden, we collect only unique assignee name and geography information

from the patent assignee data and maintain crosswalks to facilitate matching those unique name and

geography combinations (labeled by patnameid) back to patent-assignee records (patnum,assg_seq).

On the CBPBR side, we collect establishment business name and geography information (physical

and mailing) from the CBPBR files, using retimed files in years with retimed data.1 We use both

the name1 and name2 fields from the CBPBR, along with the concatenation of the two. We match by

establishment identifiers to the Longitudinal Business Database (LBD) to attach lbdfid and firmid

to the CBPBR records. Since our goal is a firm-level match, we de-duplicate to keep unique firm

identifier, name, and geography combinations.

∗Any opinions and conclusions expressed herein are those of the authors and do not represent the views of the U.S.
Census Bureau. The Census Bureau has ensured appropriate access and use of confidential data and has reviewed these
results for disclosure avoidance protection (Project 7083300: CBDRB-FY25-CES002-001)

†Tuck School at Dartmouth, US Census Bureau, NBER, and CEPR.
‡US Census Bureau.
§†Yale University.
¶Yale School of Management, CEPR, and NBER.
‖Department of State
1No retimed CBPBR files exist in Economic Census years, in 1976, or years near the end of the time series if the last

year of data is not an Economic Census Year. Retimed CBPBR files have been modified to add and remove establishment
records based upon imputed inter-censal births and deaths of establishments associated with small multi-unit firms that
are not surveyed by the Company Organization Survey (COS).
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Both the CBPBR and patent assignee data are subjected to identical cleaning algorithms. We

apply SAS Data Quality (DQ) name and geography standardization macros, along with a customized

suite of “find and replace” string commands that remove or shorten words or phrases within the

name field.2 After standardizing and cleaning the name and geography information, we generate

DQMATCH codes to facilitate fuzzy matching.3 We also generate partial name fields, one containing

the first eight characters, and another containing the first two words of the business name, along with

a “stop word” name field. The “stop word” name removes common words and phrases from the name

field.4 Finally, we create a version of the name that removes all spaces from the string.

To summarize, after the data preparation steps we have several versions of the CBPBR and

assignee name fields, namely:

1. Raw name (name)

2. Standardized name (name_std)

3. Stop word name (name_stp)

4. No space name (nameNS)

5. DQ90 match code name (name90)

6. First two words name (name2Word)

7. First 8 characters name (name8Char)

We also have the following geography variables:

1. State (state)

2. 3-character zip code (zip3)

3. 3-character FIPS county (cty)

4. Standardized city (city)

5. DQ90 match code city (city90)

A.2 Name and Geography Matching

Each unique name and geography combination collected from the patent data is matched to every

unique Census firmid, name, and geography combination in every year covered by the CBPBR. In

the post-match cleaning steps described below, we implement an allowable gap between the CBPBR

year and grant year of a given patent.

Our name and geography matching is organized into blocks and passes. A match pass identifies

records in the CBPBR and patent assignee data that agree on a given set of criteria. A block consists

2For example, we change several variations of “COOPERATIVES”, “COOPERATIVE”, and “CO OPERATIVE”
to simply “COOP”.

3DQMATCH codes use proprietary algorithms to generate hashcodes that group together similar strings. Two records
will be given the same hashcode if their string characteristics are sufficiently similar. The SAS DQMATCH function
allows for varying levels of “fuzz” in how distant strings are allowed to be before being assigned different hashcodes.

4For example, in the “stop word” name we might remove the word “INDUSTRIES” from the name field.
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of one or more match passes with broadly similar match criteria. We residualize after each block,

removing patent-assignee records that received at least one match, before proceeding to the next

match block. Match passes are incremented and assigned to matches as they are made. Organizing

our match passes in this way allows us to: (1) distinguish between different tiers of match quality

across match blocks, and (2) account for ambiguity in which match pass is of higher quality within

match blocks.

The match blocks and passes are organized as follows:

• Block 1: three passes by full name and 2 geographic elements

1. Name, city, state

(a) (name), city_std, state, where (name) includes [name, name_std, name_stp, nameNS,

name90]

(b) name90, city90, state

2. Name, zip code, state

(a) (name), zip3, state

3. Name, county, state

(a) (name), cty, state

• Residualize, removing patent assignee name and geographies matched in block 1

• Block 2: three passes by full name and 1 geographic element

1. Name, City

(a) (name), city_std, where (name) includes [name, name_std, name_stp, nameNS, name90]

(b) name90, city90

2. Name, zip code

(a) (name), zip3

3. Name, state

(a) (name),state

• Residualize, removing patent assignee name and geographies matched in block 2

• Block 3: 1 pass by full name but no geographic elements

1. Name

(a) (name), where (name) includes [name, name_std, name_stp, nameNS] (note name90 is

excluded)

• Residualize, removing patent assignee name and geographies matched in block 3

• Block 4: 1 pass by incomplete name and no geographic elements
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1. Partial name

(a) (name), where (name) includes [name2Word, name8Char]

In Block 1, match pass 1, for example, we identify CBPBR and patent-assignee records that match

on raw name (name), standardized city (city_std), and state (state). When a match is stored, we

also compute the string lengths and a series of string comparators between the two name fields. These

string comparators include: Levenstein distance (lev), Jaro-Winkler (jw), SAS compare (cmp), and

generalized edit distance (ged). We use these string comparator measures, along with the match pass,

in subsequent post-match cleaning algorithms to disambiguate matches.

A.3 Match Cleaning and Longitudinal Imputation

After the patent assignee name and geography information has passed though all match blocks for all

years of the CBPBR, we perform a series of post-match cleaning steps that balance several competing

goals. We aim to (1) eliminate ambiguity in the match, leaving each patent-assignee record (patnum,

assg_seq) matched to a single firm (firmid), (2) limit the presence of incorrect matches (limit false

positives), and (3) match as many patent assignee records as possible (limit false negatives). As

with many matching exercises, there is an inherent tension between these goals. Additional matches

can always be made by lowering quality thresholds, trading off fewer false negatives for more false

positives.

A novel attribute of our match strategy is that we leverage disambiguated assignee identifiers

available in the USPTO’s PatentsView data (pv_asgid).5 PatentsView is a patent data visualization

and analysis platform that transforms patent documents stored in XML into a relational database

with disambiguated identifiers. In the source data, the USPTO does not track unique inventors or

assignees across patent documents. The same patent assignee may appear on multiple patents with

slight differences in its reported name or geography. The PatentsView data implements clustering

algorithms that group patent assignee records (patnum, assg_seq) that have similar name and ge-

ography information. We utilize those identifiers to rationalize firmid matches across patents. For

instance, if the PatentsView data groups together multiple patents as belonging to the same as-

signee, and our matching algorithm links only a subset of those patents, we leverage the PatentsView

pv_asgid to impute the firmid from matched to unmatched patents.

Before analyzing the sequence of firmid matches for a given assignee, we clean and disambiguate

the raw matches. Details of these cleaning steps are described in Section A.5. The goal of the match

cleaning steps is to create an unbalanced patent assignee-year (pv_asgid, grant_yr) panel with a

single matched firmid for each observation. We summarize the different cleaning steps here.

1. Remove matches outside of +/- 2 years from grant_yr.

2. Remove matches to firms not payroll active in grant_yr or grant_yr-1.

3. Select among multiple matches based upon string comparators.

5In the version of PatentsView used here, the disambiguated assignee identifier is labeled assignee id. We label this
pv asgid throughout.
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4. Select most frequently matched firmid to an assignee (pv_asgid) within a given patnum,

assg_seq.

5. Select most frequently matched firmid within a pooled set of years (+/- 2 years).

6. Select most frequently matched firmid within a given pv_asgid, grant_yr.

If after applying these match cleaning steps there is more than one match for a given patent

assignee-year (pv_asgid, grant_yr), we drop all matches for that patent assignee-year. We do this

because the longitudinal algorithms that operate at the patent-assignee-year level require unique

matches. Note that each patent assignee-year maps to one or more patents granted to that assignee

in that year. In cases in which we remove all matches due to an inability to resolve to a single

matched firmid, we rely on the longitudinal imputation algorithms to identify a match. At this

point, prior to the longitudinal imputation processing, we have a panel of all unique [pv_asgid,

grant_yr] combinations with zero or one matched firmid.

The goal of the longitudinal imputation is to use the sequence of matches for a given assignee

(pv_asgid) over time to identify additional matches. For instance, if a patent assignee is missing a

match in its first year in the panel, but has a match in its second year, we can push the firmidmatched

in the second year “backwards” in time to the first year. There are several types of longitudinal

imputations that copy matches “forward” and “backward” in time and fill gaps between matches. To

make decisions about which matches can be imputed, we need to identify, for each patent assignee,

the first and last non-missing match and for each patent assignee-year, the closest non-missing match,

both forward and backwards in time. After filling gaps based on leading and lagging matches, we

assign missing matches to the modal match across years for a given assignee. The longitudinal

imputations are then performed as follows:

1. Leading gaps For assignees with missing assignee-year records prior to their first matched patent,

set the firmid equal to the firmid from their first matched year.

2. Lagging gaps For assignees with missing assignee-year records after their last matched patent,

set the firmid equal to the firmid from their last matched year.

3. Interior gaps For assignees with missing patent-year records in between matched years, set the

missing firmids equal to the closest lagged firmid when the closest lag and lead firmid are

identical (e.g. AA...A).

4. Complex interior gaps When the closest lag and lead firmids are not the same:

(a) Set firmid to the closest lag firmid if the year is closer to the lag than the lead.

(b) Set firmid to the closest lead firmid if the year is closer to the lead than the lag.

(c) Set firmid to the closest lag firmid if the year is equally close to the lead and lag.

5. Global modal Set any unmatched [pv_asgid, grant_yr] combinations to the modal match

firmid for the pv_asgid across years.
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After the longitudinal processing is complete, we move from the assignee-year level (pv_asgid,

grant_yr) back to patent-assignee records (patnum, assg_seq). We verify that all firmid matches

have positive payroll in t− 1 and/or t (payroll denom positive) in the LBD within +/- 2 years of the

grant_yr. Since a matched firmid need not be in the LBD in the grant_yr (e.g. not payroll denom

positive in the grant_yr), we include lbd_yr in the crosswalk, which captures the year of LBD to

which that the patent-assignee record can be matched.

A.4 Analysis of BDSPF-Long Crosswalk

In this section, we present a series of analyses that demonstrate the properties of the BDSPF-Long

crosswalk. These analyses includes how it compares to other patent assignee-firm crosswalks and how

alternative cleaning algorithms affect the quality of matches.

Match Quality

We first provide an overview of match rates. Table A.1 shows the percent of US and foreign

patent-assignee records (patent number-assignee sequence pairs) by match type between 1976 and

2021.6 First, about 92% of the 3.3 million US patent-assignee records receive a raw match in the

name and geo matching described in Section A.2. This share falls to 43% for foreign assignees.

Note that it is not clear what percent of patent-assignees should match to the CBPBR, especially

for foreign patents, which account for about half of patent-assignee records by the end of our data.

Foreign assignees without an employer establishments in the US, for example, will not match to

Census microdata. About 74% of US patent-assignee records and 21% of foreign assignee records

receive a unique raw match. These statistics indicate that foreign patent-assignee matches tend to

be lower quality and require additional disambiguation. Finally, our crosswalk matches 92% of US

patent-assignee records and 58% of foreign assignees. Combined, these rates yield a match rate of

approximately 75% for all patent-assignee records from 1976 to 2021.

Table A.1: Patent-Assignee Match Rates

% of Patent Assignees US Foreign All

Raw Match 92.43 42.94 67.96

Unique Raw Match 74.39 20.93 47.96

Match in Crosswalk 92.23 57.75 75.18

Total 3,336,000 3,263,000 6,599,000

Source: BDSPF-Long, PatentsView

Note: Table shows the percent of US (has US location) and Foreign (no US location) patent-assignee records from

1977 to 2021 with at least one raw match (“Raw Match”), with a unique raw match (“Unique Raw Match”), and with

a match in the final crosswalk (“Match in Crosswalk”).

To provide additional detail on the composition of the raw matches, Table A.2 shows the count of

6US patent-assignee records are those that are associated with a city state combination in the United States.
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raw matches by block. Blocks 1 and 2 condition on at least some form of geographic matching (e.g.

city, state, 3-digit zip code), block 3 is business-name only matching, and block 4 is partial name

matches. The second and third columns show the count and percent of raw matches made in each

block. The third and fourth columns show the count and percent of patent-assignee records. The

last two columns show the share of raw matches that are unique, and the percent of patent-assignee

records that receive a raw match from a given block that also receive a final match in our crosswalk,

or what we call the “conversion rate”, of raw matches in a given block.

Overall, our 6.6 million matched patent-assignee records are based on 15 million raw matches.

Roughly 31% of raw matches come from block 1, our highest quality set of match passes. Most of our

matches (55%) are made in block 3 where we match on name only. Despite only 31% of raw matches

made in block 1, over 41% of our final patent-assignee matches arise from block 1. This high share

arises because the raw matches are higher quality, with fewer false positives, and thus more likely to

be unique. Indeed, the unique rate for block 1 matches is almost 84%.

About 3% of our matched patents come from the block 4, partial name match. The unique rate

declines significantly across blocks as the match criteria become weaker, consistent with higher blocks

having more false positives. The conversion rate remains high for all blocks. Over 98% of patent

assignee records that receive a block 1 raw match end up with a match in the crosswalk. This high

rate is consistent with the fact that block 1 matches tend to be higher quality. The lowest quality

block, block 4, still has a conversion rate of nearly 88%. The final row of Table A.2 highlights a key

contribution of our new crosswalk. 35% of patent-assignee records that did not receive a raw match

nevertheless have a final match in the crosswalk. These final matches are due to the cleaning steps

that aggregate across patents within an assignee (pv_asgid), and to our longitudinal imputations.
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Table A.2: Raw Match Block Distribution

Raw Match Final Match Unique Conversion

Block Count Percent Count Percent Rate Rate

1 4,786,000 31.04 2,728,000 41.33 83.87 98.24

2 364,000 2.36 182,000 2.76 75.27 95.6

3 8,551,000 55.45 1,386,000 21 48.41 87.09

4 1,720,000 11.15 190,000 2.88 36.05 87.89

None 0 0 2,114,000 32.03 34.67

Total 15,421,000 100 6,600,000 100 47.95 75.17

Source: BDSPF-Long, PatentsView

Note: Table shows the count and distribution of raw matches (“Raw Match”) by match block. A single

patent-assignee record may have multiple raw matches. The “Final Match” columns present the count and percent of

patents by the type of raw match used in crosswalk. “Unique Rate” shows the percent of patents with a given raw

match type that had a unique raw match. “Conversion Rate” shows the percent of patents with a raw match that are

also in the final crosswalk (e.g. the raw match was “converted” into a final match). Block 1 matches use name, city,

and state. Block 2 matches use name and city. Block 3 matches use name only. Block 4 matches use an incomplete

name match. The positive conversion rate and final matches for patent-assignee records with no raw match is due to

assignee matches and longitudinal imputations.

Figure A.1 shows the match-rate time series of the BDSPF-Long crosswalk alongside the Kerr and

Fu (2008) (Kerr & Fu) and the BDSPF-Triangulation crosswalk (Graham et al., 2018; Dreisigmeyer

et al., 2018). The time coverage varies significantly between the two other crosswalks. Kerr & Fu

covers 1976 to 2001, while the BDSPF-Triangulation, due to the availability of LEHD data, covers

from 2000 forward. As noted previously, one advantage of BDSPF-Long is the long time horizon

covered by the matches, 1976 to the most recent LBD year. The BDSPF-Triangulation crosswalk only

goes back to 2000 due to coverage limitations of the LEHD employee-employer matched data. The US

assignee-record match rate of BDSPF-Long is similar to the BDSPF-Triangulation crosswalk rate and

significantly higher than Kerr & Fu rate. Both BDSPF-Long and Kerr & Fu exhibit increasing match

rates for foreign-assignee records between the late 1980s and the early 2000s, and both BDSPF-Long

and BDSPF-Triangulation match rates decline from the mid 2000s for foreign-assignee records.
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Figure A.1: Match Rate Time Series

(a) US Patent Assignees (b) Foreign Patent Assignee

Source: BDSPF-Long, PatentsView

Notes: Panel (a) shows the percent of patent-assignee records, granted within a given time window, that received a

match in each crosswalk. BDSPF-Long is the crosswalk introduced in this paper. BDSPF-Triag is the LEHD-based

crosswalk described in Graham et al. (2018) and Dreisigmeyer et al. (2018). Kerr & Fu is the crosswalk developed by

Kerr and Fu (2008).

Table A.3 shows the count of firmids per pv_asgid in the raw match. There are several reasons

the number of firmids per pv_asgid may be greater than one. For example, mergers and acquisitions

may change the firm identifier associated with a patent assignee over time in the CBPBR. About 62%

of patent assignees (pv_asgid) do not receive a raw match at all. Given that 67% of patent-assignee

records get a raw match, shown in Table A.1, this suggests that the assignees that do not get a

matched firmid account for relatively few patents. About 25% of assignees are matched to a single

firmid. Moreover, the cleaning steps reduce the percent of pv_asgids with 10 or more firmids

dramatically, from 2.4% to nearly zero. Some of this reduction comes from simply removing matches

that are too ambiguous. The percent of pv_asgids with no firmid matches rises from 62% in the

raw match to 65% in the final crosswalk. These results suggest that the cleaning steps significantly

reduce the ambiguity of matches within pv_asgids.
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Table A.3: Match Ambiguity

Raw Match Final Match

Firmids per Assginee Count Percent Count Percent

0 353,000 61.81 374,000 65.41

1 145,000 25.39 169,000 29.55

2 30,500 5.34 21,500 3.76

3 11,500 2.01 5,000 .87

4 6,100 1.07 1,400 .24

5-9 11,500 2.01 900 .16

10+ 13,500 2.36 20 0

Source: BDSPF-Long, PatentsView

Note: Table shows the count and distribution of patent assignees (pv_asgid) that have a given number of matched

firmids across all of their patents in the raw match (“Raw Match”) and in the final crosswalk (“Final Match”).

The cleaning steps also increase the consistency of matches within a pv_asgid across years. Table

A.4 reports the percent of pv_asgids and pv_asgid-years for which there is a change, from year-to-

year, in the firmid matched. Note that, by construction, the final crosswalk matches a single firmid

to a given pv_asgid-year, but the raw match may have multiple firmids per pv_asgid-year. As

such, in the raw match we consider it a “break” if the set of firmids is different between t − 1 and

t. In the raw match, 8.2% of pv_asgids had at least one break, or change in firmid, across the time

series. In the final crosswalk this falls to 5%. In terms of pv_asgid-years, 7.9% exhibit year-to-year

breaks in their matched firmids in the raw match compared to 3% in the final crosswalk. Again, we

may not expect the count of breaks in matched firmids to be zero due to mergers and acquisitions.

Despite this expectation, our cleaning algorithms significantly reduce the probability that a firmid

changes from year-to-year for a given pv_asgid.

Table A.4: Breaks in PV Assignee ID-Firmid Over Time

Raw Match Final Match

Assignees 571,000 571,000

Assignees with Breaks 47,000 28,500

Assignees with Breaks % 8.23 4.99

Assignee-Years 1,478,000 1,478,000

Assignee-Year Breaks 117,000 45,000

Assignee-Year Breaks % 7.92 3.04

Source: BDSPF-Long, PatentsView

Notes: Table shows the count of patent assignees and patent-assignee year combinations that experience a change in

their matched firmid between years in the raw match (“Raw Match”) and in the final crosswalk (“Final Match”).
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While the cleaning steps reduce ambiguity among raw matches, the longitudinal imputations

increase match rates by extending the reach of the clean name and geography matches we make. Table

A.5 shows the count and percent of matched patent assignee records by the longitudinal imputation

status. About 7% of matches are identified using longitudinal imputes, which account for about

5.8% of all records. The majority of longitudinal-impute cases are “Lagging Gaps”, where we push

matches forward in time to unmatched pv_asgid-years. The next most frequent types of longitudinal

imputations are Leading Gaps (pushing matches backwards in time) and complex interior matches

(filling gaps with different matches on either end).

Table A.5: Longitudinal Imputations

Longitudinal Imputation Count Percent

Unmatched 1,396,000 21.16

None 4,827,000 73.16

Leading Gap 110,000 1.67

Lagging Gap 133,000 2.02

Simple Interior 49,500 .75

Complex Interior 82,500 1.25

Total 6,598,000 100

Source: BDSPF-Long, PatentsView

Note: Table shows the count of patent-assignee records (patnum, assg_seq) by the type of longitudinal impute they

received, if any.

To assess the quality of our matches we compare them to the very high quality BDSPF-Triangulation

model “A1” matches. These matches are ones for which the BDSPF-Triangulation algorithms are able

to “fully traingulate” an inventor and assignee, both being corroborated by employment records in

LEHD. There are approximately 1.4 million “A1” matches. Among the BDSPF-Triangulation “A1”

matches, we compute the number of “correct” BDSPF-Long matches (those for which both crosswalks

agree), the number of incorrect BDSPF-Long matches (those for which the crosswalks disagree) and

the number of records for which BDSPF-Long is unable to identify a match.

We measure precision of the BDSPF-Long matches as the number of correct matches divided by

the sum of correct and incorrect matches. This metric captures the share of matches we make that

are correct. We then compute recall as the count of correct and incorrect matches divided by the

count of correct, incorrect, and missing matches. This metric captures the share of records for which

we make a match, correct or not.

Table A.6 reports the results of this analysis. The precision of matches for US assignees records is

significantly higher than for foreign assignee records (94% vs. 81%). Recall shows an even bigger gap

between US and foreign assignees (98% vs 80%). The BDSPF-Triangulation model “A1” matches

have certain properties that make them unrepresentative of the typical patent assignee record (e.g.

they are more likely to be US-based). However, at least among the US-based patent assignee records,
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our matches tend to be very high quality within this subset.

Table A.6: BDSPF-Long Match Precision & Recall

US Foreign All

Precision 93.6 80.98 93.08

Recall 97.94 80.44 97.23

Total pat-asgn Records 1,350,000 57,500 1,407,500

Source: BDSPF-Long, PatentsView

Notes: Table shows the precision and recall of BDSPF-Long matches using the “A1” model (e.g. highest quality)

matches from the BDSPF-Triangulation crosswalk as a truth set. Precision is the count of patent-assignee records

(patnum, assg_seq) with agreement between BDSPF-Long and BDSPF-Triag divided by the count of all records with

for which the BDSPF-Long has a matched firmid, regardless of agreement. Recall is the count of patent-assignee

records with agreement between BDSPF-Long and BDSPF-Triag divided by the sum of the count of matched records

with agreement and the records with no BDSPF-Long match.

Finally, we turn to the declining match rate for US-based assignees after 2010. The match rate for

US assignees falls from 95% to 90% between the early 1980s and the late 2010s. As noted above, it is

difficult to interpret patent-assignee match rates because the true subset of employer businesses among

patent assignees is unknown. Despite this limitation, we can evaluate whether there are changes over

time in the prevalence of certain types of matches. Figure A.2 shows the decline the percent of

patent assignees by raw-match type over time. The excluded category, which when summed with

the displayed categories sums to 100%, is block 1 matches. Several patterns in Figure A.2 are worth

noting. First, the share of US patent-assignee records with no raw match to the BR rises from 5% to

11%. Second, there has also been an increase in the share of block 4 matches, which are the lowest

quality partial name matches. Third, we see a substantial decline in the excluded block 1 category,

which falls from 88% to 74%.
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Figure A.2: US Patent Assignee Records by Raw Match Status

Source: BDSPF-Long, PatentsView
Notes: Figure shows the distribution of patent-assignee records (patnum, assg_seq) by the type of raw match, if any.
The excluded category, which is also the largest, are those with a Block 1 match. If the Block 1 percent were included
all groups would sum to 100 within a given time period.

The changing composition of raw-match status among patent-assignee records may have a signif-

icant effect on match rates if our ability to identify a final matched firmid for a given record varies

with the type of raw match made, which appears to be the case in last column of Table A.2. Indeed,

approximately 98% of pat-asgn that receive a Block 1 match have a final match compared to 88%

for Block 4.

Knowing that match quality varies by raw-match block, and that the composition of raw matches

changes over time, suggests that the changing raw match composition may explain the declining match

rate for US-based assignees. Figure A.3 assesses this possibility by estimating a counterfactual match

rate in which either “conversion rates” are held constant at initial levels, or match-pass composition

is held constant. The first set of bars shows the actual US-based patent assignee record match rate,

as depicted in the left panel of Figure A.1. The second bar in Figure A.3 shows what match rates

would have been if the conversion rates by match pass were held at their initial levels and match-pass

shares evolved as they do in the underlying data. The third bar in A.3 shows what match rates would

have been if the match-pass composition was held at its initial level and conversion rates varied by

year as they do in the underlying data.

As we can see, the decline in match rates would be exacerbated if conversion rates were held
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constant at their initial levels. In contrast, if the match-pass composition had remained constant,

match rates for US-based assignees would have stayed unchanged at about 94%. This exercise suggests

that the composition of raw matches explains the decline in match rates. Over time, more raw matches

are made in block 4 or not at all, putting downward pressure on match rates.

Figure A.3: Counterfactual Match Rates

Source: BDSPF-Long, PatentsView
Notes: Figure shows actual and simulated match rates for the BDSPF-Long crosswalk over time. The “Time Inv.
Cvcrsn”, or time-invariant conversion rate measure, shows what match rates would be if raw match composition across
match passes vary as they do in the data but conversion rates (the rate at which matches from each block are
converted into final matches) remains as they were in the 1976-1984 period. The “Time Inv. Mpass”, or time invariant
match pass composition measure, shows what match rates would be if conversion rates for each mar match pass vary
as they do in the data, but the raw match composition remains as they were in the 1976-1984 period.

Match Experiments

As is often the case when matching data to the Business Register, the matching procedures

are complex and reflect choices made at various stages of development. To guide these choices, we

conducted several “experiments” in which a single component of the matching procedure was changed.

We then compared the precision and recall among the BDSPF Triangulation A1 cases, as in Table

A.6, for each experimental crosswalk.

The first experiment used application year to window matches initially, instead of relying only on

the grant year. If an assignee were active around the application of the patent, but for one reason or

another exits before the grant year, perhaps due to an acquisition, it might be missed using only the

50



grant year. In this case, since app-to-grant gaps average roughly 3 years, windowing only around the

grant year is too restrictive and excludes true positives.

The second experiment focused on a more fundamental question about the unit of processing

during the longitudinal processing steps. Rather than aggregate across patents to the pv_asgid-

year level, one could instead perform all processing steps at the patent-record level. This approach

naturally allows for some within pv_asgid-year variation in firmid matches, since it does not impose a

single firmid match for the pv_asgid-year, which are then pushed back down to the patent-assignee

records.

Table A.7 presents the precision and recall statistics for these two experiments. We focus only on

US-based assignees. The precision for both experiments is slightly lower than the preferred algorithm

reported in Table A.6 (93.6% for US-based assignees). The recall for both are slightly higher than

the preferred algorithm (97.9%). Even with the more fundamental change of unit of processing in the

second experiment, there is very little change to the overall quality of the match.7

Table A.7: Experiments Precision & Recall

Preferred Experiment 1 Experiment 2

Algorithm Application Year Patent-Level Processing

Precision 93.6 90.97 91.03

Recall 97.94 99.53 99.51

Source: BDSPF-Long, PatentsView

Table shows the precision and recall of US-based BDSPF-Long matches using the “A1” model (e.g. highest quality)

matches from the BDSPF-Triangulation crosswalk as a truth set. The first column (“Preferred Algorithm”) replicates

the US-based assignee record precision and recall measures from Table A.6. The second and third show similar

statistics from two different experiments where the preferred algorithm was modified by either using application year

instead of grant year (“Experiment 1 Application Year”) or processing was done at the patent-level instead of the

assignee-year-level (“Experiment 2 Patent-Level Processing”). Precision is calculated as count of patent-assignee

records (patnum, assg_seq) with agreement between BDSPF-Long and BDSPF-Triag divided by the sum of the count

of records with agreement and those that disagree but for which the BDSPF-Long has a matched firmid. Recall is

calculated as the count of patent-assignee records with agreement between BDSPF-Long and BDSPF-Triag divided by

the sum of the count of records with agreement and those that did not have a BDSPF-Long match.

A.5 Match Cleaning and Longitudinal Imputation Detail

The match cleaning and longitudinal imputation program proceeds according to the following steps.

1. Collect PatentsView data.

(a) pv ayr: [patnum, app_yr]

7One experiment resulted in a change to the preferred algorithm. That experiment removed a step after 6.a. in
Section A.5 that kept only matches with the lowest match pass. Removing this constraint, i.e., retaining all match
passes within a block, increased precision considerably, so we retain all passes in the final algorithm. This match-quality
increase suggests that the relative quality of matches varies across match blocks, but that within a block, the match
pass is not a strong predictor of quality.
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(b) pv gyr: [patnum, grant_yr]

(c) pvassigneeid: [pv_asgnid, patnum, assg_seq, app_yr, grant_yr]

(d) pvassgineeid frame: [pv_asgnid, grant_yr], unique [pv_asgnid, grant_yr] combina-

tions in pvassgineeid.

(e) pvpatasgn: [patnum, assg_seq, pv_asgnid, rawlocation_id]

(f) pvloc: [rawlocation_id, location_id, city, state, country, latlong]

2. Create a frame of all patents as a backbone for imputation.

(a) Start with a list of all patent-assignee sequence combinations, pvpatasgn.

(b) Add location information, merge (m:1) by rawlocation_id to pvloc.

(c) Add app and grant years, merge (m:1) by patnum to pv ayr and pv gyr.

(d) This yields pvMatchFrame: [patnum, assg_seq, app_yr, grant_yr, assignee_id, rawlocation_id,

location_id, city, state, country, latlong]

3. Identify a window of valid years for each patnameid, the identifier used in the raw matches.

(a) Start with patnameid patid dataset genreated by the patent data prep programs, which

maps unique name+geo combinations to patent assignee records.

(b) Create a long dataset that maps patnameid to all years within +/- two years around the

grant year of all patents the patnameid maps to.

(c) For each [patnameid, year] pair that exists within +/- two years of a patent grant, we

compute the minimum gap between that year and the closest patent grant.

(d) This yields patnameid validyears: [patnameid, year, mingap]

4. Identify a what years every firmid is payroll active.

(a) Loop over the LBD establishment datasets, keeping all unique firmids in either the firmid

or firmid_rorg fields. firmids that exist in a given year of the LBD necessarily have an

associated payroll-denom positive establishment. We keep track of what field the firmid

is drawn from.

(b) This yields lbd active: [firmid, year, source].

5. Stack raw match files.

(a) Raw match files contain matches of every patent, via the raw match processing described

above, to a given year of the CBPBR.

(b) Loop over the years to create a single file.

(c) This yields allmatches: [patnameid, year, geotype, fid, mpass, lev, jw, cmp, ged,

l_strlen, r_strlen]

6. Perform first pass of cleaning allmatches.
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(a) Merge (m:1) by year, patnameid to patnameid validyears, keeping only matched records.

This limits [patnameid,year,firmid] matches that are within a valid window around the

grant years.

(b) Collapse to the [patnameid,year,firmid] level, collapsing across [patnameid,year,firmid]

matches that were made via different names. We take the minimum of the string com-

parators and an average of the length of two name strings (BR l_strlen and patent

r_strlen).

(c) Normalize string comparator measures by indexing to the best measure within [patnameid,year].

This transforms the string comparator into the ratio of the value for a given match

and the best (lowest) string comparator of that type (e.g. lev, jw, etc) for a given

[patnameid,year].

(d) Create combination string comparator score, w, as the equally weighted squared sum of

the normalized measures.8

7. Move matches to patent assignee record level.

(a) Joinby patnameid using patnameid patid, keeping [patnum, assg_seq, grant_yr, firmid,

cbpbr_yr, mpass, w].

(b) Now that we are at the [patnum, assg_seq], we again limit to +/-2 years from grant.

(c) Exclude matches ([firmid,cbpbr_yr]) that are not active within +/-2 around the grant

year. To do this, we merge (m:1) by firmid, grant_yr=year to lbd active, keeping only

matched records.

(d) Again, at the patnum, assg_seq level we keep only the best match pass for a given patent.

Above we took the best match pass at the patnameid, year level, but a patent may

have multiple patnameids associated with it (e.g. more than one geo). Within a patnum,

assg_seq, we keep only matches assocaited with the lowest match pass for the patnum,

assg_seq.

(e) Add PatentsView assignee identifiers, merge (m:1) patnum, assg_seq to pvassigneeid to

get pv_asgid.

8. More cleaning before moving to assigneeid-year level.

(a) Drop matches based in the string comaparator index. If the gap between the best and

second best match for a patnum, assg_seq is ≥ 1.2 then keep only the best match.

(b) Select modal [firmid, pv_asgid] match within patnum, assg_seq. To do this, we count the

total number of times each [firmid, pv_asgid] is matched, call that mcount. We then find

the maximum mcount by [patnum, assg_seq, pv_asgid], which is the most often matched

firmid for the pvasgid among those firmids match to a given [patnum, assg_seq].

8For string comparators x1, x2,...,xn, the combined value w =
√

x2
1 + x2

2 + ...+ x2
n.
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(c) Collapse to [pv_asgid, firmid, grant_yr] level, taking the count of times an pv_asgid

matches each firmid within a year and the minimum (best) string comaparator score for

that [pv_asgid, firmid, grant_yr] combo and counting the number of matched patents

(mtch_patcount) for triplet.

(d) Complete the panel, merge (m:1) by pv_asgid, grant_yr to pvassgineeid frame to

collect all valid (grant active) [pv_asgid, grant_yr] pairs.

(e) This yields a panel dataset with: [pv_asgid, grant_yr, firmid, mtch_patcount, w]

9. Save a “global modal” for use later.

(a) At this point we compute the modal firmid for each pv_asgid, save as modalfid.

(b) This yields global modal: [pv_asgid, modalfid].

10. Compute “local modals” for use later.

(a) Use a rolling window of +/-2 around a focal year, pool all [pv_asgid, grant_yr, firmid]

matches within that window, and compute the modal firmid for each pv_asgid, associ-

ating that “local modal” (local_modalfid).

(b) This yields local modal: [pv_asgid, grant_yr, local_modalfid].

11. Again use the string comparators to drop duplicates.

(a) Above we dropped records based on the best and second best string comparator scores by

[patnum, assg_seq]. Here we look within [pv_asgid, grant_yr] pairs. If the gap between

the best and second best match for an assigneeid-year is ≥ 1.2 then keep only the best

match.

12. Select “local modals”.

(a) Limit to local modals, merge (m:1) by pv_asgid, grant_yr to local modal, and if the

count of matched firmids for a given assigneeid-year is > 1, then replace it with the local

modal firmid.

13. Select patent-count modal within assignee id-year

(a) Use matched patent count for each [pv_asgid, grant_yr, firmid] combination to select

a single match by [pv_asgid, grant_yr], keeping only the firmid with the most matched

patents.

14. Select modal by assigneeid-firmid within assigneeid-year.

(a) We count the number of matches (mtch_patcount) by [pv_asgid, firmid], call that

pvfidmcount. Find the firmid with the maxmimum pvfidmcount within a given [pv_asgid,

grant_yr].

15. Drop duplicates within assigneeid-year.
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(a) At this point we’ve done everything we can to select a single firmid for a given [pv_asgid,

grant_yr] combination. If we still have more than one firmid for an [pv_asgid, grant_yr],

we remove them all. We keep one record for the any [pv_asgid, grant_yr] that loses

matches, leaving the matched firmid blank to allow longitudinal edits to fill in the match

if possible.

16. Find the first and last non-missing firmid for a given assigneeid.

(a) This yields first nonmissing: [pv_asgid, grant_yr, fnmfid, fnmfid_yr], where fnmfid_yr

is the year of the first non-missing firmid for a given pv_asgid.

(b) This also yields lst nonmissing: [pv_asgid, grant_yr, lnmfid, lnmfid_yr].

17. Flag longitudinal pattern types.

(a) Flag pv_asgid as type=1 if the pv_asgid is matched to only one firmid across grant_yrs

(e.g., a firmid match sequence of AAA).

(b) Flag pv_asgid as type=3 if the pv_asgid switches back and forth to the same firmid

(e.g., a match sequence of AABA).

(c) Flag assigneeid as type=2 if the pv_asgid is not type 1 or 3, and matches to more than

zero firmids (cannot be be 1, if it was then it would be type=1) (e.g., a match sequence of

AAABBB).

18. Perform longitudinal imputes.

(a) Merge on the most recent non-missing lead and lag firmids (1:1) by pv_asgid, grant_yr

to first nonmissing and lst nonmissing.

(b) Leading gaps: if not missing fnmfid, and missing firmid, then longimpute=1 and fill

firmid with fnmfid. This pushes the first non-missing firmid backwards in time.

(c) Lagging gaps: if not missing lnmfid, and missing firmid, then longimpute=2 and fill

firmid with lnmfid.

(d) Identify most recent lag and lead matched firmid (mrleadfid, mrlagfid) and the associ-

ated gap between a given year and that most recent match (mrleadfid_yr, mrlagfid_yr)

if missing firmid.

(e) Simple interior: if not missing mrlagfid and missing firmid, and mrlagfid and mrleadfid

are the same, the longimpute=3 and fill with mrlagfid.

(f) Complex interior (lag): if not missing mrlagfid, and missing firmid, and mrlagfid is not

equal to mrleadfid, and lag gap (grant_yr-mrlagfid_yr) is less than lead gap (grant_yr-

mrleadfid_yr), then longimpute=4 and fill with mrlagfid.

(g) Complex interior (lead): if not missing mrleadfid, and missing firmid, and mrlagfid is

not equal to mrleadfid, and lead gap is less than lag gap, then longimpute=5 and fill

with mrleadfid.
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(h) Complex interior (tie): if not missing mrlagfid, and missing firmid, and mrlagfid is not

equal to mrleadfid, and lead gap is equal to lag gap, then longimpute=6 and fill with

mrlagfid.

19. Fill remaining unmatched assigneeid-years with global modal by assigneeid.

(a) We merge to global modal (m:1) by pv_asgid to get modalfid and replace firmid with

modalfid if modalfid is non-missing and firmid is missing.

20. Move back to patent-level, matching assigneeid-year-firmid matches onto patents by assigneeid-

year.

(a) We merge to pvassigneeid (1:m) by pv_asgid, grant_yr to get all [patnum, assg_seq]

associated with each [pv_asgid, grant_yr]

21. Apply hand edits.

(a) Apply both a set of hand matched string name-to-firmid-grant_yr combinations (e.g.,

if name is “XYZ” then firmid is “123”) and a suite of regular expressions (e.g., if name

contains “ABC” then firmid is “456”).

(b) Remove erroneous matches to distributed service provides. There is a list of known match-

ing issues related to cases where firms such as cafeterias have the name of the businesses

they serve in the CBPBR name fields.

22. Apply LBD active scoping conditions to the final crosswalk.

(a) Merge (m:1) by firmid, year=grant_yr to lbd active. If the matched [firmid, grant_yr]

is found in lbd active then set lbd_yr to grant_yr.

(b) For cases that do not match (year=grant_yr), then we look for a [firmid,year] in

lbd active that is closest within +/- 2 years around grant_yr. We preference gaps,

in order, [+1, -1, -2, +2].

23. The final crosswalk then contains unique [patnum, assg_seq] combinations with variables:

[patnum, assg_seq, grant_yr, lbdfid, firmid, lbd_yr, longimpute].

B Merging Patent Data into Compustat

To match the USTPO patents to Compustat, we start with an extract of CRSP/Compustat Merged

(Fundamentals Annual) downloaded fromWharton Research Data Services (WRDS) on July 9, 2024.9

Firms in Compustat are identified by two variables, gvkey and permno. The former is a unique

number assigned to each firm, while permno uniquely identifiers the share class of a publicly traded

9We choose consolidation level C, Industry Format INDL and FS, Data Format STD, Population Source D, Currency
USD, Company Status Active and Inactive for years 1950 to 2024. Though both Compustat and our patent datasets
extend beyond 2016, our sample period ends in that year due to the lag between the application and patent years noted
earlier.
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security. Though infrequent, a gvkey can be associated with more than one permno if the firm has

more than one share class.

As with the LBD, we match patents to firms in Compustat by application year, in this case by

combining the patent-to-permno mapping in KPSS with the patent-to-gvkey mapping of Dyevre and

Seager (2024) (hereafter DS).10 As in our LBD match, though our matching algorithm matches by

grant year, we associate patents to firms in their application year, since this timing most closely

approximates the state of the firm in the year the innovation occurred. Our use of two separate

mappings provides a cross check on each mapping’s assignment of patents to firms, as well as their

patent coverage. To make the DS mapping comparable to that of KPSS, we use the gvkey to permno

concordance implicit in our downloaded Compustat file to assign one or more permnos to each gvkey

in the DS mapping. (This concordance is simply all unique gvkey-permno pairs in the Compustat

file.) We then merge the KPSS mapping into the amended DS mapping by patent and permno. This

merge identifies patent-firm pairs that are in both mappings, as well as patent-firm pairs that appear

in only one of the two mappings.11 Our matching of patents to permno represents the union of these

mappings.

The stacked-line scatter plot in the left panel of Figure A.4 reports the cumulative number of

patents matched to Compustat by either KPSS or DS in each application year, with the top line

showing the total number of patents in the union of the two mappings, referred to as the “total”

number of patents for the remainder of this section. As indicated in the figure, about a third of

total patents appear only in one of the two datasets. One reason for this discrepancy is that DS

consider all patents while KPSS (as well as KPST) focus on utility patents.12 As indicated in the

right panel of the figure, non-utility patents included only in DS (represented by the lowest dashed

line) account for about 5 percent of total patents across application years. The gap between the first

and second dashed lines captures utility patents contained in DS but not KPSS. These account for 5

to 15 percent of all patents across years. The distance between the highest dashed and lowest solid

line picks out utility patents that are in KPSS but not DS. These account for a declining share over

time, from about 30 to about 10 percent. Finally, the gap between the two solid lines captures the

share of patents in both mappings, which represent about two-thirds of patents across the years.

10KPSS consider patents from 1926 to 2022 while DS focus on 1950 to 2020. The KPSS mapping is available on
Github here. The DS concordance is available on Github here. We consider these mappings versus others in the
literature because they are the most recent and because they extend to our sample period of interest.

11Reassuringly, across the 3,664,570 patents in the combined mappings, we find only 77,672 (about 2 percent) for
which KPSS and DS differ in their assignments of a permno. In these cases, we default to the KPSS assignment.

12Utility patents account for the vast majority of patents issued by the USPTO and are for products, processes or
machines that are new or improved. Other types of patents include “design” patents, which are drawings of a design
with only minimal associated text, and “plant” patents for discovered or created plants.
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Figure A.4: Patents in the KPSS vs DS Mappings to Compustat

Source: PV, KPSS, DS, and authors’ calculations. Figure is a stacked-line scatter plot that reports number

(left panel) or share (right panel) of patents matched to Compustat by KPSS and DS over our sample period,

by application year. The two dashed lines represent patents utility and other patents appearing only in DS.

The two solid lines capture utility patents appearing only in KPSS and in both KPSS and DS.

C Aggregate Compustat Sales and Operating Profit

Figure A.5: Aggregate Growth Rates (Compustat Panel)

Source: Compustat and authors’ calculations. Figure displays the t- to 4-year aggregate growth rates for sales,

operating profit and TFP across firms in Compustat.
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Figure A.6: Knowledge Inputs, Ideas and Output in the Compustat Panel

Source: PV, KPSS, KPST, Compustat, DS, and authors’ calculations. Figure displays aggregate knowledge

inputs, patenting, sales and operating profit across firms in the Compustat panel. Top row compares levels to

levels. Bottom row compares growth rates to levels.

D Census R&D Surveys

The Census Bureau conducts R&D surveys, collectively referred to as RADS, with available data

from 1972 to 2021. The surveys are conducted in collaboration with the National Center for Science

and Engineering Statistics (NCSES) and used to publish aggregate US R&D statistics.13

The RADS comprise 4 different surveys that have changed over time. The Survey of Industrial

Research & Development (SIRD) was conducted from 1953 to 2007, followed by the Business Research

& Development and Innovation Survey (BRDIS) from 2008 to 2016, the Business Research & Devel-

opment Survey (BRDS) from 2017 to 2018, and the Business Enterprise Research & Development

(BERD) survey from 2018 to the present. These surveys provide detailed information on firms’ basic

and applied R&D expenditures, as well as their funding source, i.e., federal versus private firm.

The SIRD and BRDIS covered firms with five or more employees, while the BERD covered busi-

nesses with 10 or more employees. The BERD excludes companies that performed for funded less

than $50k of R&D . While such firms were included in the past surveys, Census estimates suggest

that such firms accounted for small portions of aggregate R&D. Starting in 2017, the Annual Business

Survey (ABS) collected R&D activity for firms with one to nine employees. The ABS also collects

information on business innovation activities.

The R&D surveys are collected by Employer Identification Number (EIN). We use the BR to

13These totals are publicly available at https://ncses.nsf.gov/data-collections/national-patterns/2021#data.
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collapse EINs to the firm level and develop code to the match the data to our LBD panel. In practice,

the enterprise identifiers in the RADs are not always EINs. We cycle over various Census identifiers

and also match to a window of years to improve matching. This procedure is especially important in

certain years around transitions in the identifiers used in the underlying Census data.

The survey re-designs were driven by changes in how R&D is performed and funded, and included

changes to both the information collected and sampling frames. From 1957 to 1992, the SIRD

focuses exclusively on manufacturing firms known to have conducted R&D in the previous 5 years.

In 1992, sampling expanded substantially to include firms with unknown R&D expenditures. These

“uncertainty” cases comprise the majority of the current sampling in terms of firms. The sampling

frame is partitioned into three groups: companies known to perform R&D, companies that report

two consecutive years of R&D expenditure; and companies whose R&D activity is unknown. To be

included in the sample, a firm must meet a minimum size threshold (5 or more employees for the

SIRD and 10 or more for the subsequent surveys). Firms that are in the top 50 of their state by

payroll, or have an R&D lab (NAICS 5417) are included in the sample with certainty. Firms that

report two consecutive years of zero R&D expenditures are dropped from future surveys. Surveyed

firms are sent a “long” form if they are known R&D performers, and a “short” form otherwise. The

“short” firm is designed to establish whether the firm engages in R&D, and thus does not contain

many of the detailed questions appearing on the long form, which often requires different parts of a

firm to weigh in on responses.

E Additional Patent-Level Information

The panels in the top row of Figure A.7 provide a breakdown of the share of patents, breakthrough

patents, 5-year external citations and patent value attributable to “domestic” versus “foreign” patents

in the raw PV dataset, where a domestic patent is defined as one in which at least one assignee has

is located in the United States. The panels in the bottom row of Figure A.7 offer an analogous

breakdown for the set of patents that match to Compustat.
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Figure A.7: Domestic vs Foreign Patents by Application Year

Source: PV and authors’ calculations. Figure provides a breakdown of the share of patents, breakthrough patents, 5-year external

citations and patent value attributable to “domestic” versus “foreign” patents. A domestic patent is defined as one in which at

least one assignee has is located in the United States. Top row is for the raw PV dataset. Bottom row is for patents matched to

Compustat.

Table A.8 reports the number of patents, in thousands, of the top 25 patenting firms in the PV

dataset from 1977 to 2017, as well as the percent of their patents that are “domestic”, i.e., for which

at least one assignee is located in the United States. Table A.9 reports analogous information for

the top 25 patenting firms in Compustat over the same period. As indicated in both tables, the

patents of U.S. based multinationals like IBM are almost exclusively domestic, while those of foreign

multinationals like Canon or Sony are almost all foreign.
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Table A.8: Top 25 Patenters in Raw PV Data, by Assignee 1977 to
2017

Share

Assignee Patents Domestic

INTERNATIONAL BUSINESS MACHINES CORPORATION 137.1 99.97

SAMSUNG ELECTRONICS CO., LTD. 120.5 0.38

CANON KABUSHIKI KAISHA 73.8 0.38

SONY CORPORATION 54.7 6.66

FUJITSU LIMITED 52.9 0.49

KABUSHIKI KAISHA TOSHIBA 49.2 0.58

GENERAL ELECTRIC COMPANY 45.4 99.76

MITSUBISHI HEAVY INDUSTRIES, LTD. 42.7 0.36

HITACHI, LTD. 42.6 0.56

INTEL CORPORATION 41.6 99.80

SUMITOMO ELECTRIC INDUSTRIES, LTD. 36.5 0.47

LG ELECTRONICS INC. 34.0 0.07

NEC CORPORATION 31.5 0.38

MICROSOFT CORPORATION 30.1 99.95

SIEMENS AKTIENGESELLSCHAFT 28.1 2.14

MICRON TECHNOLOGY, INC. 27.0 99.93

SEIKO EPSON CORPORATION 26.8 0.28

TOYOTA JIDOSHA KABUSHIKI KAISHA 26.3 0.34

HONDA MOTOR CO., LTD. 25.2 0.94

RICOH COMPANY, LTD. 24.9 2.59

HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. 24.5 99.93

QUALCOMM INCORPORATED 24.3 99.79

ROBERT BOSCH GMBH 24.2 2.17

TEXAS INSTRUMENTS INCORPORATED 23.3 99.97

SHARP KABUSHIKI KAISHA 23.1 0.93

Source: PV and authors’ calculations. Table reports the number of patents, in thousands,

of the top 25 patenting firms in the PV dataset from 1977 to 2017, as well as the percent

of their patents that are “domestic”, i.e., for which at least one assignee is located in the

United States. Patents can have multiple assignees. For the purposes of this table, each

assignee is credited with a patent.
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Table A.9: Top 25 Patenters in Compustat Sample, by permno 1977 to 2017

Share Break- Share Share Real Share

permno Name Patents Domestic throughs Domestic Citations Domestic Value Domestic

12490 IBM 116.3 99.8 10.8 100.0 258.4 99.8 355.2 99.8

21152 CANON INC 75.7 0.8 4.2 2.0 131.1 1.3 21.6 1.6

51131 SONY 61.8 7.8 3.8 20.6 157.4 11.2 15.4 9.1

64231 HITACHI LTD 58.8 1.0 4.3 1.8 188.7 1.9 4.2 1.2

53727 PANASONIC 55.9 2.1 2.7 7.4 157.4 3.1 4.9 1.2

12060 GE AEROSPACE 52.0 94.8 1.5 97.7 102.4 96.9 838.4 96.9

59328 INTEL CORP 42.0 96.5 3.2 99.3 110.6 98.0 570.0 98.5

10107 MICROSOFT 41.0 99.1 6.0 99.8 183.5 99.1 624.3 99.7

27828 HP INC 35.1 98.6 3.7 99.8 108.8 99.8 299.5 99.4

59555 HONDA 32.5 1.4 0.8 1.8 73.3 1.9 9.8 0.8

76655 TOYOTA 28.2 8.0 0.7 24.2 54.1 7.1 10.2 9.1

55782 NEC CORP 27.3 2.5 3.4 4.5 103.7 4.5 0.6 1.7

53613 MICRON 26.2 95.2 1.8 99.9 67.8 96.3 88.9 97.9

37867 FUJIFILM 25.3 0.6 1.2 0.1 54.9 0.5 5.7 0.0

77178 QUALCOMM INC 25.2 99.4 1.9 99.6 62.0 99.5 195.7 99.4

15579 TEXAS INSTR 22.9 97.7 2.3 98.7 80.2 97.5 226.6 96.6

17830 RTX CORP 21.1 91.8 0.3 97.5 30.8 94.2 144.9 99.8

22779 MOTOROLA 20.9 99.6 4.7 99.8 117.4 99.3 177.6 99.7

10145 HONEYWELL 20.2 96.2 0.7 98.8 58.7 98.0 133.3 98.7

88935 SIEMENS AG 20.2 27.6 0.4 39.0 36.5 37.9 5.5 30.6

88487 PHILIPS 19.8 4.4 0.5 5.3 54.4 13.0 7.8 3.3

27983 XEROX 19.2 99.6 1.8 99.9 46.1 99.7 59.5 99.5

33452 ERICSSON 18.8 12.0 4.1 27.7 69.6 31.8 40.4 36.5

14593 APPLE INC 17.6 99.8 0.8 100.0 71.6 99.8 569.6 99.9

11754 KODAK 16.5 99.3 0.8 98.6 42.6 99.3 55.8 99.7

Source: Compustat, PV, KPSS, DS, and authors’ calculations. Table reports the number of patents, breakthroughs, 5-year ex-

ternal citations and patent value from 1977 to 2017 among the top 25 patenting firms, as well as the percent that are that are

from “domestic” patents, i.e., those for which at least one assignee is located in the United States. Patents, breakthroughs and

citations are expressed in thousands. Value is expressed in billions of 1982 dollars.

F Patent Types Over time

Figure A.8 presents a breakdown of US patenting activity by World Intellectual Property Organization

(WIPO) categories, as recorded in PV.14 The first panel of the figure shows patent counts, followed

by counts of external citations in the second panel, counts of breakthrough patents in the third, and

patent value in the fourth. In the first panel we see that the increase in patenting shown in Figure 1 is

largely driven by innovation in Electrical Engineering, which includes patents related to computing,

telecommunications, information technology, and semi-conductors. This growth occurs in two bursts

starting in the late 1980s and after the Great Recession.15

14While Figure A.8 plots just the first WIPO category listed for each patent in PV, we find similar patterns when
patents are assigned to all categories listed for them.

15The top 25 patents by value in the KPSS dataset are for Electrical Engineering. All but 3 are granted in the
mid-to-late 1990s; all but 7 are classified as breakthroughs; and all but 6 were assigned to Cisco or Oracle.
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Figure A.8: Patenting Activity by WIPO Code

Source: PV, KPSS, KPST and authors’ calculations. Notes: Figure provides a breakdown of patents, external citations, break-

through patents and patent value by WIPO category and year. Patent value is in trillions of 1982 dollars.

In the second, third, and fourth panels, we see that Electrical Engineering patents also account

for the greatest share of external citations, breakthroughs and patent value. There is less agreement

among across these measures for the second largest contributor to patenting activity. Indeed, while

Instrument patents are responsible for a surging share of external citations in the latter part of the

sample period, there is no commensurate jump in Instrument breakthroughs or value. By contrast,

patents in Chemistry, which includes pharmaceuticals and biotech, account for a relatively large share

of value and breakthroughs vis à vis citations.

G Additional Patent Efficiency Estimates

Figure A.9 compares the baseline patent elasticities from Figure 8 in the main text to the results of

an alternate estimation where counts of patents, breakthroughs and citations are with respect only

to the patents for which value can be observed.

Figure A.9: Elasticities Restricted to Patents with Value

Source: Compustat, PV, KPSS, DS, KPST, and authors’ calculations. Figure reports comparison of the 95 percent confidence

intervals for patent efficiency coefficients (βs) for the baseline specification reported in the main text to an alternate specification

where counts of patents, breakthroughs and citations are with respect only to the patents for which value can be observed. Each

regression is restricted to the set of firms with positive SG&A or R&D in each year, whether or not they patent. Granted patents

are assigned to firms in their application year.
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H Pre vs Post Patent Efficiency Estimates

We investigate the relationship between knowledge inputs and patent outcomes further by estimating

separate elasticities for counts of low- versus high-value patents for each quality measure in each

year of the sample. We define low-quality patents as those in the first quartile in that year, while

high-quality are those in the fourth quartile.16 This approach ensures that our left-hand side variables

are comparable counts across all measures of patenting activity, and exploits variation in the firms

and their timing of input-use and ‘high’ versus low-value outcomes. To reduce disclosure burden, we

estimate just two elasticities for each count and knowledge stock, the first for the years leading up

to and including 1996 and the second for years 1997 and beyond. Figure A.10 plots these estimates.

The first 8 bars in each panel are for the 4 knowledge stocks computed for the LBD panel, while the

remaining 4 bars, separated by the vertical dashed line, represent the estimated elasticities for SG&A

and R&D stocks in Compustat.

Figure A.10 shows that average patent elasticities rise over time for both low- and high-citation

patents and for both low- and high-novelty patents. Elasticities also rise over time for low-value

patents. By contrast, estimated elasticities fall over time for high-value patents. We find a similar

message using the Compustat panel. Firms seem to be improving in their ability to translate R&D

inputs into cited and novel ideas, even as their ability to generate ideas that the stock market predicts

will lead to future growth declines.

16This separation is straightforward for patent value and citations, though we note that more than one quarter of
patents in each year typically have zero external citations; we choose among those zeros randomly. As breakthroughs
are defined across-time, we define patents to be low- or high-novelty if their underlying 5-year backward versus forward
textual similarity ratios is in the first versus fourth quartile in each year.
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Figure A.10: Low- vs High-Quality Patent Elasticities Before and After 1996

Source: PV, LBD, KPSS, KPST, RADS, BDSPF-Long, Compustat, and authors’ calculations. Notes: Figure reports
estimates of ηj by knowledge stock for the LBD and Compustat panels on a version of Equation 6 where the left-hand
side variables are the counts of low- or high-quality patents as defined in the text and the right-hand-side dummies
pick out just two periods, the years leading up to and including 1996 and the years after 1997. Whiskers correspond to
95 percent confidence intervals. Standard errors are clustered at the firm-level.
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I Estimated Patent Elasticity Firm Fixed Effects (γj)

Figure A.11: Aggregate Estimated Firm Fixed Effects (γf ) by Semi-Decade

Source: PV, LBD, KPSS, KPST, RADS, BDSPF-Long, Compustat and authors’ calculations. Notes: Figure reports

the log sum of firms’ exponentiated fixed effects, i.e., ln
(∑

f e
γ̂f

)
, from Equation 6 by patenting activity and

knowledge stock for the LBD and Compustat panels.

J Estimates for Balanced Panel of Compustat Firms

This section reports versions of Figures 8 and A.13 using estimates or Equation 6 from the balanced

panel of Compustat firms.

Figure A.12: Estimated Patent Elasticities by Semi-Decade (ηj) for Balanced Compustat Panel

Source: PV, LBD, KPSS, KPST, RADS, BDSPF-Long, Compustat and authors’ calculations. Notes: Figure reports

estimates of ηj ’s from Equation 6 by patenting activity and knowledge stock for the LBD and Compustat panels.

Whiskers denote 95 percent confidence intervals. Standard errors are clustered at the firm-level.
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Figure A.13: Predicted Growth in Patenting from Elasticity Estimates for a Balanced Compustat
Panel

Source: PV, LBD, KPSS, KPST, RADS, BDSPF-Long, Compustat and authors’ calculations. Notes: Figure reports

growth in patents, external citations, breakthrough patents and patent value over the 1977 to 2007 (external citations,

breakthroughs) or 2012 (patents, patent value) sample period.

Figure A.14: Estimated Semi-Decade Fixed Effects (γj) for a Balanced Compustat Panel

Source: PV, LBD, KPSS, KPST, RADS, BDSPF-Long, Compustat and authors’ calculations. Notes: Figure reports

estimates of γj from Equation 6 by patenting activity and knowledge stock for the LBD and Compustat panels.

Whiskers denote 95 percent confidence intervals. Standard errors are clustered at the firm-level.
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K Replication of KPSS Tables IV and V

KPSS Tables IV and V present their main results linking firm growth to own and competitor patent

values and own and competitor citations. Their firm-level OLS estimating equation (equation 12 in

the paper) is:

logXf,t+τ − logXf,t = aτθf,t + bτθI\f,t + cZft + uft+τ . (A.1)

The sample period is 1950 to 2010.KPSS consider τ ∈ (0, 4). The left-hand side is the log growth of

outcome X between years t and t + τ . The first and second terms on the RHS are firm f ’s patent

(flow) value in year t (θft) and the total (flow) value of patents by other firms in the same 3-digit

SIC industry in year t (θI\f,t). These variables are both scaled by total assets, i.e., own patent value

per own assets and competitor patent value per competitors’ assets, respectively. The third term on

the RHS is a set of controls encompassing the lagged dependent variable and lagged capital, labor

and a measure of firms’ stock volatility.

KPSS report their results in terms of “beta coefficients”, i.e., multiplying the estimate coefficients

of interest by their standard deviation. In Table A.10 below, I report my replication of their Table

IV. Comparison of this table with the one in the paper reveals that the coefficients match well, the

t-stats a bit less so in terms of magnitude but not necessarily significance. The latter difference could

be do to my use of reghdfe versus their use of reg.As indicated in Table A.10, across all outcomes,

own patent value is associated with positive growth, while competitor patent value is linked to lower

growth.
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Table A.10: Replication of KPSS Table IV: Outomes and Patent Value

Own Value Competitor Value

0 1 2 3 4 0 1 2 3 4

Panel A Profits

0.018 0.029 0.036 0.043 0.047 -0.016 -0.031 -0.035 -0.042 -0.050

3.057 3.865 3.387 3.409 3.251 -3.566 -6.075 -6.788 -6.489 -6.832

Panel B Output

0.008 0.014 0.020 0.025 0.033 -0.017 -0.034 -0.043 -0.050 -0.059

2.428 2.588 2.604 2.461 3.012 -5.750 -8.452 -7.952 -7.664 -7.384

Panel C Capital

0.010 0.019 0.027 0.033 0.038 0.002 -0.006 -0.014 -0.023 -0.033

7.332 6.031 4.862 3.806 3.492 0.437 -0.957 -1.933 -2.647 -3.488

Panel D Labor

0.006 0.011 0.016 0.020 0.022 -0.005 -0.015 -0.019 -0.021 -0.023

4.278 3.484 3.288 3.041 2.695 -1.363 -3.225 -4.011 -3.398 -3.276

Panel E TFPR

0.013 0.017 0.019 0.023 0.025 -0.003 -0.007 -0.009 -0.014 -0.018

2.020 2.033 2.455 3.167 3.965 -1.428 -2.478 -2.938 -3.947 -4.764

Source: Compustat, PV, KPSS. Table reports replication of KPSS Table IV. Each pair of rows in

the table contain estimates from a separate regression. The first row in each pair reports the “beta

coefficients” while the second row reports the t-stats. Left panet reports results for own patent value

(aτ ) while right panel reports results for competitors’ patent value (bτ ).

To demonstrate the value of their measure over existing estimates of patent value, KPSS compare

the results for growth as a function of own and competitor patent value to results from estimation of

a similar specification that uses own and competitor citations instead of patent value. They report

these results in their Table V. Table A.11 reports my replication of that table, using their citation

measure. Here, too, my coefficient estimates line up well with those reported in the KPSS paper.

One thing to note regarding these results is that while own citations do a relatively good job with

TFP , competitor citations do not show much of a relationship with TFP , Profit or Output.
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Table A.11: Replication of KPSS Table V: Outcomes and Citations

Own Value Competitor Value

0 1 2 3 4 0 1 2 3 4

Panel A Profits

0.006 0.011 0.017 0.023 0.029 -0.002 0.000 0.000 0.005 0.004

3.709 4.354 4.218 4.558 5.002 -0.773 0.017 0.076 0.789 0.644

Panel B Output

0.001 0.002 0.008 0.013 0.017 0.000 0.002 0.004 0.005 0.007

0.444 0.786 2.392 2.501 2.881 0.022 0.555 0.910 0.977 1.063

Panel C Capital

-0.005 -0.004 -0.001 0.005 0.008 0.003 0.005 0.006 0.008 0.010

-3.816 -1.758 -0.230 1.021 1.501 1.771 1.706 1.486 1.582 1.732

Panel D Labor

-0.004 -0.003 0.002 0.005 0.007 0.006 0.010 0.013 0.016 0.019

-2.705 -1.076 0.486 1.293 1.463 2.766 3.312 3.633 3.295 3.282

Panel E TFPR

0.005 0.008 0.008 0.010 0.010 -0.001 -0.001 0.002 0.003 0.004

3.661 4.368 3.921 4.057 3.834 -0.951 -0.347 0.772 1.068 1.186

Source: Compustat, PV, KPSS. Table reports replication of KPSS Table V. Each pair of rows in

the table contain estimates from a separate regression. The first row in each pair reports the “beta

coefficients” while the second row reports the t-stats. Left panet reports results for own patent value

(aτ ) while right panel reports results for competitors’ patent value (bτ ).
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